

Please write clearly in	ı block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level **CHEMISTRY**

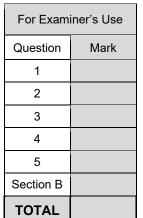
Paper 3

Time allowed: 2 hours

Materials

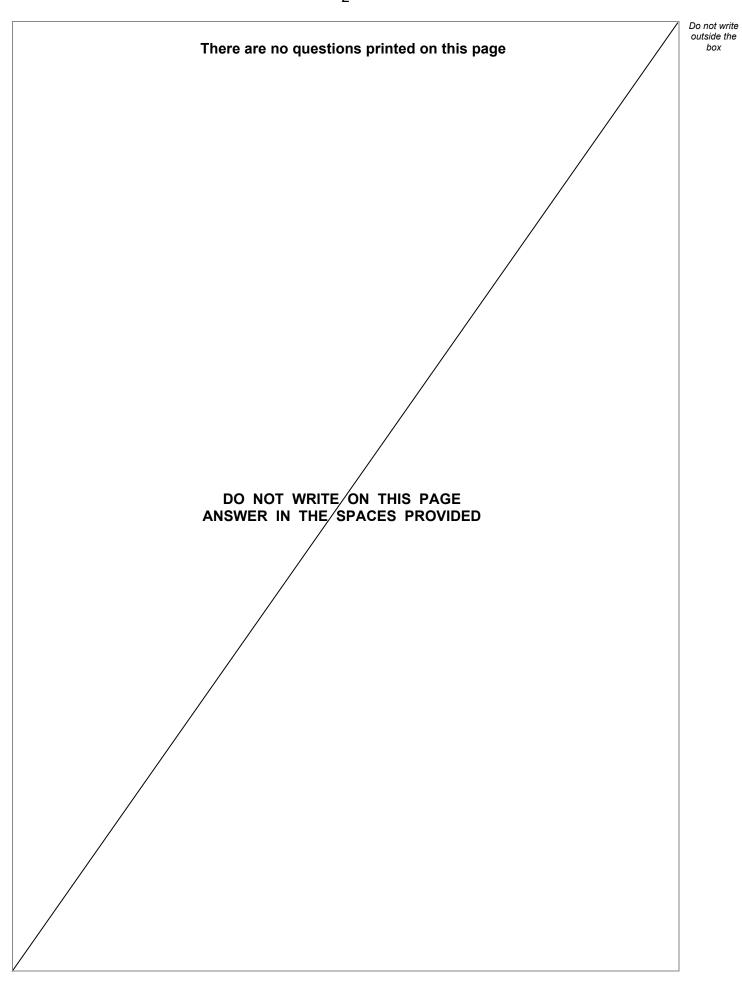
For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.


Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- · All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information


- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Α	dvice
•	You are advised to spend 70 minutes on $\textbf{Section}~\textbf{A}$ and 50 minutes on $\textbf{Section}$

Section A

Answer all questions in this section.

- 0 1 A value for enthalpy of solution can be determined in two ways:
 - from a cycle, using lattice enthalpy and enthalpies of hydration
 - from the results of a calorimetry experiment.

0	1	.[1	Define the term enthalpy of lattice dissociation
---	---	----	---	--

[2 marks]

1 . 2 The enthalpy of solution for ammonium nitrate is the enthalpy change for the reaction shown.

$$NH_4NO_3(s) + aq \rightarrow NH_4^+(aq) + NO_3^-(aq)$$
 $\Delta H = +26 \text{ kJ mol}^{-1}$

Table 1

	NH ₄ ⁺ (g)	NO ₃ ⁻ (g)
Enthalpy of hydration $\Delta_{hyd}H/kJ \text{ mol}^{-1}$	-307	-314

Draw a suitably labelled cycle and use it, with data from **Table 1**, to calculate the enthalpy of lattice dissociation for ammonium nitrate.

[3 marks]

Enthalpy of lattice dissociation kJ mol⁻¹

0 1 . 3

A student does an experiment to determine a value for the enthalpy of solution for ammonium nitrate.

The student uses this method.

- Measure 25.0 cm³ of distilled water in a measuring cylinder.
- Pour the water into a beaker.
- Record the temperature of the water in the beaker.
- Add 4.00 g of solid NH₄NO₃ to the water in the beaker.
- Stir the solution and record the lowest temperature reached.

Table 2 shows the student's results.

Table 2

Initial temperature / °C	20.2
Lowest temperature / °C	12.2

Calculate the enthalpy of solution, in kJ mol⁻¹, for ammonium nitrate in this experiment.

Assume that the specific heat capacity of the solution, $c = 4.18 \text{ J K}^{-1} \text{ g}^{-1}$

Assume that the density of the solution = 1.00 g cm⁻³

[3 marks]

Enthalpy of solution	kJ mol⁻

0 1.4	The uncertainty in each of the temperature readings from the thermometer used in this experiment is ±0.1°C				
	Calculate the percentage uncertainty in the temperature change in this experiment. [1 mark]				
	Percentage uncertainty				
0 1.5	Suggest a change to the student's method, using the same apparatus, that would reduce the percentage uncertainty in the temperature change.				
	Give a reason for your answer. [2 marks]				
	Change				
	Reason				
0 1.6	Another student obtained a value of +15 kJ mol ⁻¹ using the same method. Suggest the main reason for the difference between this experimental value for the enthalpy of solution and the correct value of +26 kJ mol ⁻¹				
	[1 mark]				
	Question 1 continues on the next page				

0 1. 7 Table 3 shows some entropy data at 298 K

Table 3

	Entropy S/JK ⁻¹ mol ⁻¹
NH ₄ NO ₃ (s)	151
NH ₄ +(aq)	113
NO ₃ -(aq)	146

Calculate a value for the Gibbs free-energy change ($\triangle G$), at 298 K, for the reaction when ammonium nitrate dissolves in water.

$$NH_4NO_3(s) + aq \rightarrow NH_4^+(aq) + NO_3^-(aq)$$
 $\Delta H = +26 \text{ kJ mol}^{-1}$

Use data from **Table 3** and the value of ΔH from the equation. Assume for the solvent, water, that the entropy change, $\Delta S = 0$

Explain what the calculated value of ΔG indicates about the feasibility of this reaction at 298 K

[4 marks]

kJ mol ⁻¹

0 1.8 Ammonium nitrate decomposes as shown.

$$NH_4NO_3(s) \to N_2(g) + \frac{1}{2}\,O_2(g) + 2\,H_2O(g) \hspace{0.5cm} \Delta H = +123 \text{ kJ mol}^{-1}$$

The entropy change (ΔS) for this reaction is +144 J K⁻¹ mol⁻¹

Calculate the temperature at which this reaction becomes feasible.

[2 marks]

Temperature K

18

Turn over for the next question

[6 marks]

0 2

Tschermigite is a hydrated, water-soluble mineral, with relative formula mass of 453.2

The formula of tschermigite can be represented as M.xH₂O, where M represents all the ions present.

Table 4 shows its composition by mass.

Table 4

Element	% by mass
N	3.09
Н	6.18
Al	5.96
S	14.16
0	70.61

In an analysis, it is found that the mineral contains the ions NH_4^+ , Al^{3+} and SO_4^{2-}

Calculate the empirical formula of tschermigite and the value of x in M.xH₂O

Describe the tests, with their results, including ionic equations, that would confirm the identities of the ions present.

	D "
	Do not write outside the box
	6

0 3	Under suitable conditions, 2-bromobutane reacts with sodium hydroxide to produce a mixture of five products, $\bf A$, $\bf B$, $\bf C$, $\bf D$ and $\bf E$.		
	Products A , B and C are alkenes.		
	A is a structural isomer of B and C.		
	A does not exhibit stereoisomerism.		
	B and C are a pair of stereoisomers.		
	Products D and E are alcohols.		
	D and E are a pair of enantiomers.		
0 3.1	Give the names of the two concurrent mechanisms responsible for the formation of the alkenes and the alcohols. [2 mark]	(s]	
	Mechanism to form alkenes		
	Mechanism to form alcohols		
0 3.2	Define the term stereoisomers. [2 mark	[8]	
0 3 . 3	Deduce the name of isomer A. Explain why A does not exhibit stereoisomerism. [2 mark]		
	Name		
	Explanation	— —	
		-	
		-	

Do not write outside the box

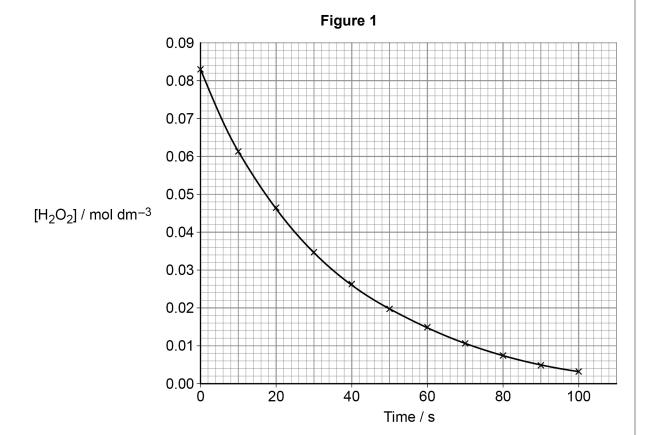
0 3.4	Outline the mechanism for the reaction of 2-bromobutane with sodium hydroform alkene A .	oxide to
	Term dinerie 7t.	[3 marks]
0 3 . 5	Deduce the name of isomer B and the name of isomer C .	
	Explain the origin of the stereoisomerism in B and C .	[2 marks]
	Names	
	Explanation	
0 3 . 6	Draw 3D representations of enantiomers ${\bf D}$ and ${\bf E}$ to show how their structurelated.	res are
		[2 marks]
	Question 3 continues on the next page	

■8 336

Dο	not	write
ou	tside	e the
	ho	v

		_
3.7	A student compares the rates of hydrolysis of 1-chlorobutane, 1-bromobutane and 1-iodobutane.	
	The suggested method is:	
	 add equal volumes of the three halogenoalkanes to separate test tubes add equal volumes of aqueous silver nitrate to each test tube record the time taken for a precipitate to appear in each test tube. 	
	State and explain the order in which precipitates appear.	
	[2 marks]]
	Order in which precipitates appear	_
		_
	Explanation	
		_

Do not write outside the Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED


0 4	Hydrogen peroxide solution decomposes to form water and oxygen.
	$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$
	The reaction is catalysed by manganese(IV) oxide.
	A student determines the order of this reaction with respect to hydrogen peroxide. The student uses a continuous monitoring method in the experiment.
	The student places hydrogen peroxide solution in a conical flask with the catalyst and uses a gas syringe to collect the oxygen formed. The student records the volume of oxygen every 10 seconds for 100 seconds.
0 4 . 1	Explain why the reaction is fastest at the start. [2 marks]

0 4 . 2

The graph in **Figure 1** shows how the concentration of hydrogen peroxide changes with time in this experiment.

Tangents to the curve in Figure 1 can be used to determine rates of reaction.

Draw a tangent to the curve when the concentration of hydrogen peroxide solution is 0.05 mol dm^{-3}

Use your tangent to calculate the gradient of the curve at this point.

[2 marks]

Gradient _____ mol dm⁻³ s⁻¹

Question 4 continues on the next page

0 4 . 3

The concentration of hydrogen peroxide solution at time *t* during the experiment can be calculated using this expression.

$$\begin{bmatrix} \mathbf{H}_2 \mathbf{O}_2 \end{bmatrix}_t = \begin{bmatrix} \mathbf{H}_2 \mathbf{O}_2 \end{bmatrix}_{\text{initial}} \left(\frac{\mathbf{V}_{\text{max}} - \mathbf{V}_t}{\mathbf{V}_{\text{max}}} \right)$$

 $\left[{\rm H_2O_2} \right]_t$ = concentration of hydrogen peroxide solution at time t / mol dm⁻³

 $\left[\mathrm{H_2O_2}\right]_{\mathrm{initial}}$ = concentration of hydrogen peroxide solution at the start / mol dm $^{-3}$

 $V_{\rm max}$ = total volume of oxygen gas collected during the whole experiment / cm 3

 V_t = volume of oxygen gas collected at time t / cm³

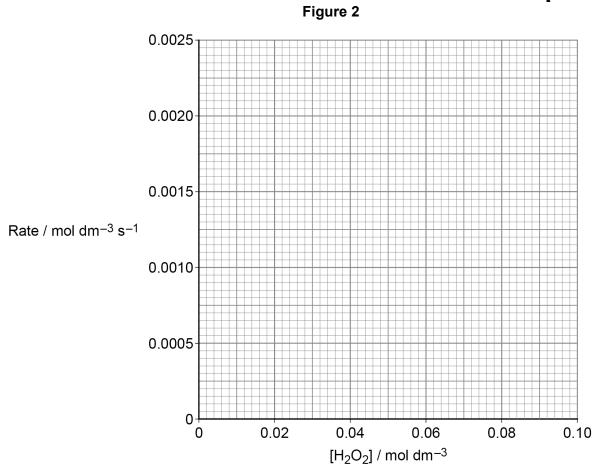
In this experiment, $V_{\text{max}} = 100 \text{ cm}^3$

Use **Figure 1** and the expression to calculate $[H_2O_2]_t$ when 20 cm³ of oxygen has been collected.

[2 marks]

$[H_2O_2]_t$	mol dm ⁻
L	IIIOI UIII

Table 5 shows data from a similar experiment.


Table 5

[H ₂ O ₂] / mol dm ⁻³	0.02	0.03	0.05	0.07	0.09
Rate / mol dm ⁻³ s ⁻¹	0.00049	0.00073	0.00124	0.00168	0.00219

0 4. 4 Plot the data from **Table 5** on the grid in **Figure 2**.

Draw a line of best fit.

[2 marks]

0 4 . 5	Use Figure 2 to determine the order of reaction with respect to H_2O_2
	State how the graph shows this order.

[2 marks	
----------	--

Order			

How the graph shows this order _____

10

0 5	This question is about catalysis.
0 5 . 1	Zeolites are used as heterogeneous catalysts in the catalytic cracking of alkanes.
	Tetradecane (C ₁₄ H ₃₀) can be cracked to form octane and a cycloalkane.
	Give an equation for this reaction.
	State the meaning of the term heterogeneous. [2 marks]
	Equation
	Equation
	Heterogeneous
0 5 . 2	A student determines the concentration of ethanedioate ions in an acidified solution by titration with potassium manganate(VII) solution.
	$2 \text{MnO}_4{}^- + 5 \text{C}_2 \text{O}_4{}^{2-} + 16 \text{H}^+ \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_2 + 8 \text{H}_2 \text{O}$
	The mixture is warmed before the addition of potassium manganate(VII) solution because the reaction is slow at first. When more potassium manganate(VII) solution is added, the mixture goes colourless quickly due to the presence of an autocatalyst.
	Explain the meaning of the term autocatalyst.
	Explain, using equations where appropriate, why the reaction is slow at first and then goes quickly.
	[6 marks]

		19		
	_			_
	_			
5 . 3	catalysed by C	etween peroxodisulfate ions and iodide i co²+ ions.	ions in aqueous	solution can be
		$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-}$	+ 2	
	Table 6 gives r	relevant standard electrode potentials.		
		Table 6		
		Electrode half-equation	<i>E</i> ^e / V	
		$S_2O_8^{2-}(aq) + 2e^- \rightarrow 2SO_4^{2-}(aq)$	+2.01	
		$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+1.82	
			+1.82 +0.54	
	Use the electro	$Co^{3+}(aq) + e^- \rightarrow Co^{2+}(aq)$	+0.54	ction. [3 marks]

Turn over ►

11

Section B

Answer all questions in this section.

	· · · · · · · · · · · · · · · · · · ·	
, -	Inswer per question is allowed. nswer completely fill in the circle alongside the appropriate answer.	
CORRECT MET	HOD WRONG METHODS	
If you want	to change your answer you must cross out your original answer as sho	own.
If you wish as shown.	to return to an answer previously crossed out, ring the answer you now	wish to select
	o your working in the blank space around each question but this will no additional sheets for this working.	t be marked.
0 6	Which atom in the ground state contains at least one unpaired p elect	tron? [1 mark]
	A Na	0
	B Ne	0
	c 0	0
	D Sc	0
0 7	Complete combustion of 0.0100 mol of an organic acid produced 0.02 carbon dioxide.	200 mol of
	The same amount of the acid required 20 cm³ of 1.00 mol dm⁻³ NaOH neutralisation.	I (aq) for
	Which could be the formula of the acid?	[1 mark]
		[1 mark]
	A HCOOH	0
	B CH₃COOH	0
	C HOOCCOOH	0
	D HOOCCH2COOH	0

Do not write outside the

0 8	Which substance has no delocalised electrons?	[1 mark]
	A graphite	0
	B methylbenzene	0
	C poly(propene)	0
	D sodium	0
0 9	Consider the change that occurs in the shape of the curve for the distribution molecular energies in a gas when the temperature of the gas is increased. Which is a correct statement about the gas molecules at a higher temperature.	ised.
	A There are more molecules with any given energy.	0
	B There are more molecules with the mean energy.	0
	C There are more molecules with the most probable energy.	
	D There is an increase in the most probable energy of the molecules.	
1 0	Which of these oxidation states is correct?	[1 mark]
	A Chlorine in Cl₂ is −1	0
	B Chromium in K ₂ Cr ₂ O ₇ is +7	0
	C Fluorine in F₂O is −1	
	D Hydrogen in NaH is +1	

1 1	Which change to a hydrogen electrode has no effect on the electrode	potent	al? [1 mark]
	A the concentration of the hydrogen ions	0	
	B the pressure of the hydrogen	0	
	C the surface area of the platinum electrode	0	
	D the temperature of the acid	0	
1 2	Some electrode potential data are shown.		
	$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$ $E^{e} = -0.76 \text{ V}$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $E^{e} = -0.13 \text{ V}$		
	Which is a correct statement about this cell?		
	$Zn(s) Zn^{2+}(aq) Pb^{2+}(aq) Pb(s)$		
			[1 mark]
	A Electrons travel in the external circuit from zinc to lead.	0	
	B The concentration of lead(II) ions increases.	0	
	C The maximum EMF of the cell is 0.89 V	0	
	D Zinc is deposited.	0	
1 3	Which can not function as a Brønsted-Lowry acid?		[1 mark]
	A CH ₃ COO ⁻	0	
	B HCO ₃ ⁻	0	
	C H ₃ O ⁺	0	
	D NH ₄ ⁺	0	

1	4	A strong acid H ₂ X dissociates in aqueous solution
---	---	--

$$H_2X(aq) \rightarrow 2H^+(aq) + X^{2-}(aq)$$

What is the pH of a 0.020 mol dm⁻³ solution of this acid?

[1 mark]

0

0

0

Which two solutions, when mixed, form a solution with a pH >7?

[1 mark]

0

0

0

1 6 Which ionisation needs less energy than this process?

$$Mg(g) \rightarrow Mg^{+}(g) + e^{-}$$

[1 mark]

A
$$Al(g) \rightarrow Al^+(g) + e^-$$

0

$$\textbf{B} \ \text{Ar}(g) \rightarrow \text{Ar}^{\scriptscriptstyle +}(g) + e^{\scriptscriptstyle -}$$

0

$$\mathbf{C} \ \mathsf{Be}(\mathsf{g}) \to \mathsf{Be}^{\scriptscriptstyle +}(\mathsf{g}) + \mathsf{e}^{\scriptscriptstyle -}$$

0

D
$$Mg^{+}(g) \rightarrow Mg^{2+}(g) + e^{-}$$

0

Do not write outside the box

1 7	Which statement is correct about the Group 1 elements?	[1 mark]
	A The Cs ⁺ ion has a more negative enthalpy of hydration than the Rb ⁺ ion.	0
	B The enthalpy of atomisation for potassium is greater than the enthalpy of atomisation for sodium.	0
	C The melting point of potassium is higher than the melting point of sodium.	0
	D The second ionisation energy of rubidium is lower than the second ionisation energy of lithium.	0
1 8	A test for chloride ions in aqueous solution involves adding dilute nitric by aqueous silver nitrate.	c acid followed
	What is the reason for adding the nitric acid?	[1 mark]
	A To convert AgNO₃ into [Ag(NO₃)₂] ⁻	0
	B To decrease the solubility of silver chloride	0
	C To increase the pH of the solution	0
	D To prevent the precipitation of other silver compounds	0
1 9	Which pair of reagents reacts to form a tetrahedral complex?	[1 mark]
	A CoCl ₂ (aq) and concentrated NH ₃ (aq)	0
	B CuSO₄(aq) and concentrated NH₃(aq)	0
	C CuSO ₄ (aq) and sodium ethanedioate(aq)	0
	D FeCl₃(aq) and concentrated HCl(aq)	0

Dо	not	ν	vr	ite
ou	tside	9	tr	ie
	bo:	×		

2 0	Cobalt(II) chloride solution changes colour when an excess of concen hydrochloric acid is added.	trated	
	What type of reaction takes place?		[1 mark]
	A hydrolysis	0	
	B ligand substitution	0	
	C precipitation	0	
	D redox	0	
2 1	The reaction between vanadium(IV) ions and manganate(VII) ions in a can be represented by the equation	acidic s	olution
	$5V^{4+}$ + MnO ₄ ⁻ + $8H^+ \rightarrow 5V^{5+}$ + Mn ²⁺ + $4H_2O$		
	What volume, in dm³, of 0.020 mol dm⁻³ KMnO₄ is needed to oxidise 0.10 mol of vanadium(IV) ions completely?		[1 mark]
			[1 mark]
	A 0.10	0	
	B 0.50	0	
	C 1.0	0	
	D 5.0	0	
2 2	2 Draws and a reacte with hydreing to form 2.2 dibromonance		
	2-Bromopropane reacts with bromine to form 2,2-dibromopropane.		
	What is the name of the mechanism of this reaction?		[1 mark]
	A Electrophilic addition	0	
	B Elimination	0	
	C Free-radical substitution	0	
	D Nucleophilic substitution	0	

Do not write outside the box

2 3	Which compound is formed from bromoethane in a nucleophilic subst	titution reaction? [1 mark]
	A CH ₃ CN	0
	B CH ₃ CH ₂ NH ₂	0
	C CH ₂ =CH ₂	0
	D CH ₃ CH ₂ OSO ₂ OH	0
2 4	Which statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for both primary and secondary alcohological statement is not correct for the primary alcohological statement is all the primary alcohological sta	ols? [1 mark]
	A They are easily oxidised to carboxylic acids by acidified K ₂ Cr ₂ O ₇ solution.	0
	B They can be formed from bromoalkanes by hydrolysis.	0
	C They form esters with carboxylic acids.	0
	D They show hydrogen bonding in the liquid state.	0
2 5	Which compound is an isomer of ethyl ethanoate?	[1 mark]
2 5	Which compound is an isomer of ethyl ethanoate? A butyl methanoate	[1 mark]
2 5		
2 5	A butyl methanoate	0
2 5	A butyl methanoateB methyl propanoate	0
2 5	A butyl methanoateB methyl propanoateC methyl butanoate	0 0
2 5	A butyl methanoateB methyl propanoateC methyl butanoate	0 0
2 5	A butyl methanoateB methyl propanoateC methyl butanoate	0 0
2 5	A butyl methanoateB methyl propanoateC methyl butanoate	0 0
2 5	A butyl methanoateB methyl propanoateC methyl butanoate	0 0

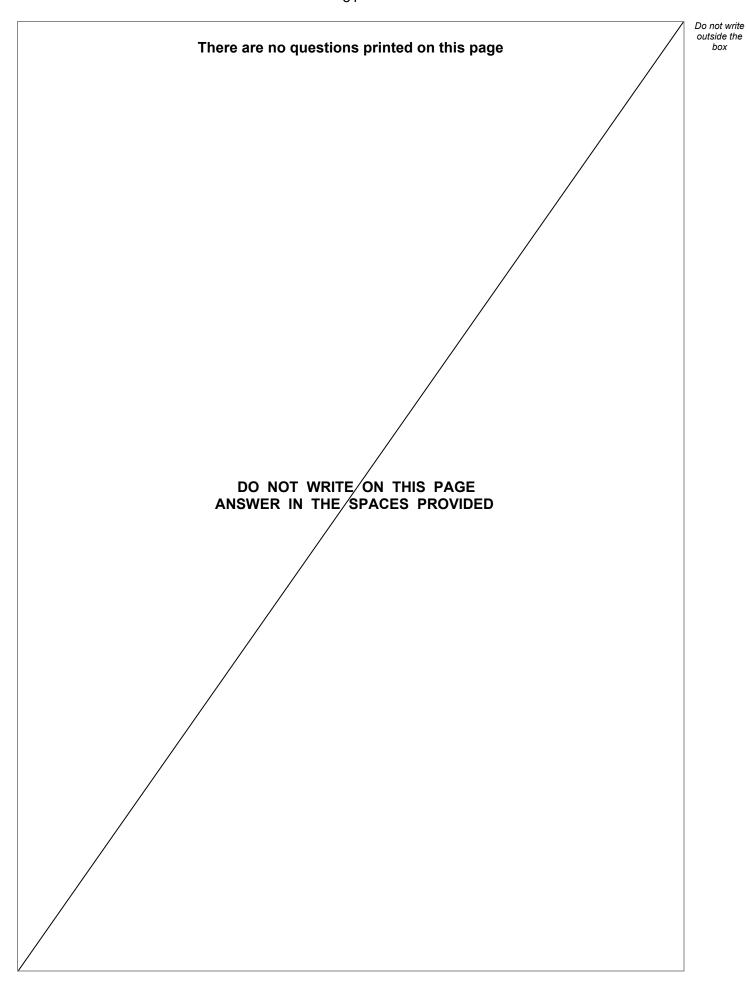
o no outsi b	the	

Which compound is an amide?	[1 mark]
A CH ₃ CH ₂ CH ₂ CN	0
B CH ₃ CONHCH ₂ CH ₃	0
C CH ₃ COOCH ₂ CH ₃	0
D CH ₃ NHCH ₂ CH ₂ CH ₃	0
Suberoyl chloride, $ClOC(CH_2)_6COCl$, is commonly used in the manuf polymers.	acture of
Which compound can form a polymer with suberoyl chloride?	[1 mark]
A LINCH CHAIL	
	0
C CH ₃ CH ₂ CONH ₂	0
D HOOCCH ₂ COOH	0
Which polymer is not hydrolysed when heated with aqueous alkali?	[1 mark]
A Kevlar	0
B Nylon 6,6	0
C Poly(propene)	0
D Terylene	0
	A CH ₃ CH ₂ CH ₂ CN B CH ₃ CONHCH ₂ CH ₃ C CH ₃ COOCH ₂ CH ₃ D CH ₃ NHCH ₂ CH ₂ CH ₃ Suberoyl chloride, ClOC(CH ₂) ₆ COCl, is commonly used in the manufipolymers. Which compound can form a polymer with suberoyl chloride? A H ₂ NCH ₂ CH ₂ NH ₂ B ClOCCH ₂ COCl C CH ₃ CH ₂ CONH ₂ D HOOCCH ₂ COOH Which polymer is not hydrolysed when heated with aqueous alkali? A Kevlar B Nylon 6,6 C Poly(propene)

2 9	Which is the main species present in an aqueous solution of aspartic	acid at pH = 14? [1 mark]
	CH ₂ COOH	
	A H—C—NH ₂ COOH	0
	СООН	
	CH ₂ COOH	
	B H—C—NH ₃	0
	СООН	
	CH ₂ COOH	
	CH_2COOH C $H - C - NH_3$ COO-	0
	COO-	
	CH ₂ COO ⁻	
	$\mathbf{D} \ H - C - NH_2$	0
	D H—C—NH ₂	
3 0	COCH ₃ COCH ₃ CH(OH)CH ₃ CH(OCOCH ₃)CH	3
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Which type of reaction is not involved in this reaction sequence?	[1 mark]
	A esterification	
	B hydrolysis	0
	C nitration	0
	D reduction	0

29 3 1 Which pair of reagents does **not** produce ethanol? [1 mark] 0 A CH₃CH₂Br and NaOH(aq) **B** CH₃COOCH₃ and NaOH(aq) **C** HCOOCH₂CH₃ and NaOH(aq) **D** CH₃CHO and NaBH₄(aq) 3 2 Which type of interaction between polypeptide chains is mainly responsible for maintaining the secondary structure of a protein in the form of an alpha helix? [1 mark] A covalent bonds **B** hydrogen bonds C ionic interactions 0 D van der Waals forces 3 3 Which statement about HOCH₂CH(NH₂)COOH is correct? [1 mark] A It decolourises bromine water. 0 **B** It is a component of DNA. **C** It is insoluble in water. **D** It reacts with hydrochloric acid.

Turn over ▶



Do not write outside the

			D
3 4	Which compound can be dehydrated to form an alkene?	[1 mark]	Do not write outside the box
	A CH₃CHO	0	
	B CH₃COOH	0	
	C CH ₃ CH ₂ OH	0	
	D CH ₃ COOCH ₃	0	
3 5	Which compound is not a 2-aminocarboxylic acid?	[1 mark]	
	A CH ₃ CH(NH ₂)COOH	0	
	B CH ₃ CH(NH ₂)CH ₂ COOH	0	
	C CH ₃ CH ₂ CH(NH ₂)COOH	0	
	D (CH ₃) ₂ CHCH(NH ₂)COOH	0	30
	END OF QUESTIONS		

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

Do not write outside the