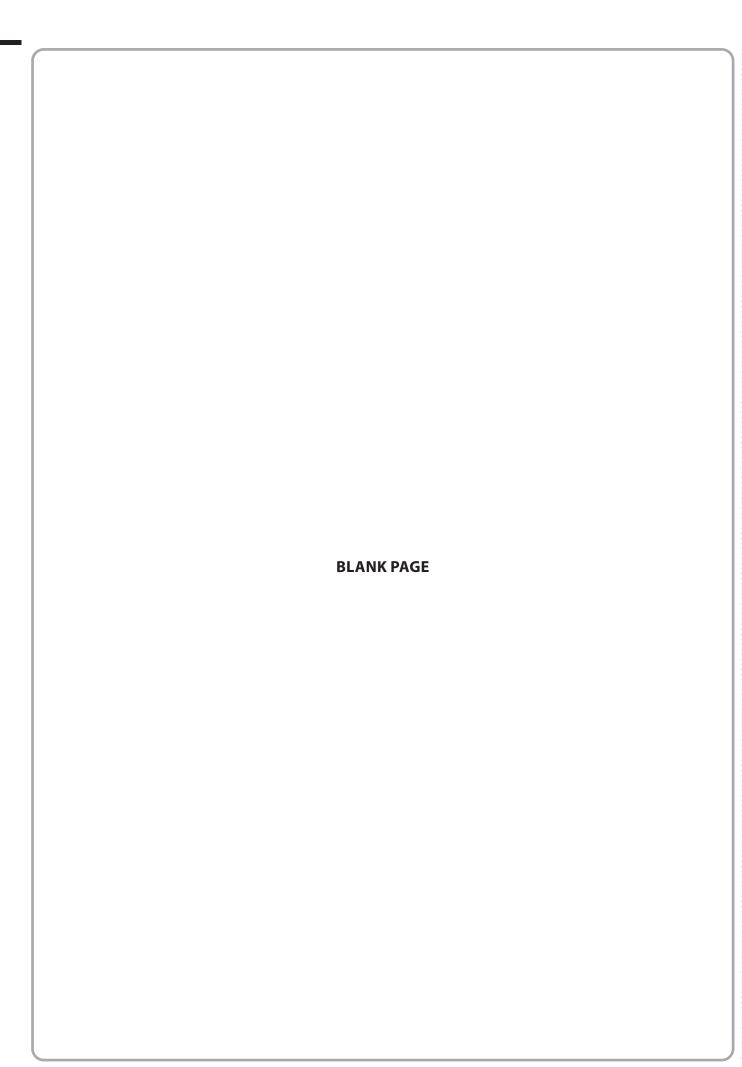
Please check the examination details bel	ow before enter	ering your candidate information	
Candidate surname		Other names	
Centre Number Candidate Number			
Pearson Edexcel Level 3 GCE			
Time 1 hour 30 minutes	Paper reference	8CH0/01	
Chemistry Advanced Subsidiary PAPER 1: Core Inorganic and Physical Chemistry			
You must have: Scientific calculator, Data Booklet		Total Marks	

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- For the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.


Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

DO NOT WRITE IN THIS AREA

Answer ALL questions.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 Which is the electronic configuration for the S²⁻ ion?
 - \triangle **A** 1s² 2s² 2p⁶ 3s² 3p²
 - \square **B** $1s^2 2s^2 2p^6 3s^2 3p^4$
 - \square **C** $1s^2 2s^2 2p^6 3p^6$
 - \square 1s² 2s² 2p⁶ 3s² 3p⁶

(Total for Question 1 = 1 mark)

- **2** Which is the most likely sequence of values, in kJ mol⁻¹, for the first four ionisation energies of barium?
 - A 1000 2251 3361 4564
 - **■ B** 496 4563 6913 9544
 - **C** 503 965 3458 4530

(Total for Question 2 = 1 mark)

3	This question is about tests for ions.	
	(a) A student wrote the following answer to a question about the processes that can give rise to a flame colour during a flame test of an inorganic compound.	
	"When an inorganic compound is heated, energy is emitted as ions move up energy levels. Electrons return to lower energy levels and release energy as light which is always in the visible region of the electromagnetic spectrum."	
	Identify three errors in this account. Include in your answers a correct word or phrase that should be used instead.	(3)
	First error	(3)
	Correct word or phrase	
	Second error	
	Correct word or phrase	
	Third error	
	Correct word or phrase	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	Forr	mula of the product	
	Resi	ult of test	
		e the expected result of this test and the formula of the product.	(2)
(i)	Writ	te the name of the reagent used to test for the anion.	(1)
		eous solution is suspected to be potassium bromide and is tested for the ee of the anion.	<u>.</u>
×	D	platinum	
×	C	magnesium	
X	В	iron	
X	A	copper	(= /
Whi	ich r	material would be most suitable for a flame test wire?	(1)
(c) A w	ire i	s used for a flame test.	
×	D	strontium bromide	
×	C	sodium iodide	
×	В	lithium carbonate	

- **4** This question is about isotopes, mass spectra and hydrocarbons.
 - (a) Hydrogen has three isotopes, ¹H, ²H and ³H.

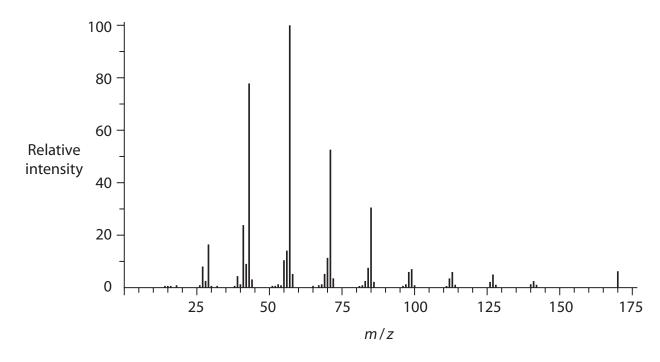
Which is the correct number of subatomic particles in ³H?

(1)

		Number of subatomic particles			
		Protons	Neutrons	Electrons	
X	Α	2	1	2	
X	В	1	2	0	
X	C	1	2	1	
\times	D	2	1	3	

(b) The diagram shows the mass spectrum of a sample of chlorine with one peak missing.

Chlorine has two isotopes, ³⁵Cl and ³⁷Cl, and a relative atomic mass of 35.5


DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(:)	The relative abundance of the icetors 35CL is 75.50/	
(1)	The relative abundance of the isotope ³⁵ Cl is 75.5%. The relative peak height of this isotope is 82.5 in the mass spectrum.	
	Calculate the relative peak height of the missing peak caused by the isotope ³⁷ Cl.	(2)
		(2)
(ii)	Give a reason for the presence of the three peaks at 70, 72 and 74.	
		(1)
(iii) Explain, using calculations, why there is an approximate ratio of 9:6:1 for the peak heights corresponding to the m/z values of 70, 72 and 74.	
	peak neights corresponding to the m/2 values of 70,72 and 74.	(3)

- (c) The mass spectrum of a hydrocarbon, \mathbf{B} , which has a molecular formula C_xH_y , is shown.
 - (i) Determine the relative molecular mass of compound **B**.

(1)

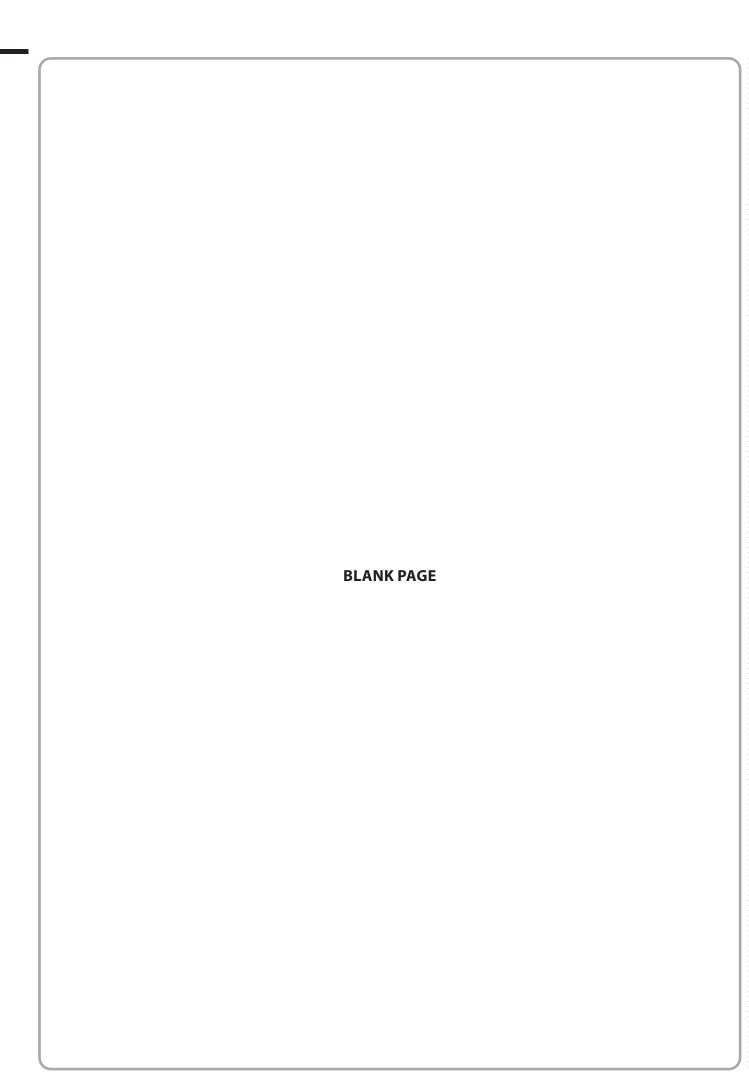
Relative molecular mass of compound **B** is _____

(ii) Deduce the molecular formula of hydrocarbon **B**.

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA


(d) 1.00 g of a **different** hydrocarbon, **W**, was burnt in oxygen. Analysis of the combustion products showed that complete combustion produced 3.14 g of carbon dioxide and 1.29 g of water.

Water and carbon dioxide were the only products of combustion.

Calculate the **empirical** formula of hydrocarbon **W**. You **must** show your working.

(4)

(Total for Question 4 = 13 marks)

DO NOT WRITE IN THIS AREA

- **5** Intermolecular forces affect melting temperatures, boiling temperatures and solubility.
 - (a) The table gives the melting temperatures of some Group 7 hydrogen halides.

Compound	Melting temperature / K
HF	190
HCl	158
HBr	185

Predict the melting temperature, in K, of hydrogen iodide, HI, using the information in the table.

(1)

Melting temperature of HI

(b) The compounds in the table are isomers.

Compound	Structural formula	Boiling temperature / °C
hexane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	69
2-methylpentane	CH ₃ CH ₂ CH ₂ CHCH ₃ CH ₃	61
3-methylpentane	CH ₃ CH ₂ CHCH ₂ CH ₃ CH ₃	63

Which is most likely to be the boiling temperature of another isomer, 2,2-dimethylbutane?

The structure of 2,2-dimethylbutane is

$$\begin{array}{c} \mathsf{CH_3} \\ | \\ \mathsf{CH_3CCH_2CH_3} \\ | \\ \mathsf{CH_3} \end{array}$$

(1)

- 50°C

*(c) Methanol, CH₃OH, is miscible with water in all proportions.	
Sodium chloride is much less soluble in methanol than in water.	
Sociality emonate is materiless soluble in medianor than in water.	
Explain these statements using your knowledge of the interactions between	า
solutes and solvents.	
You must use diagrams to illustrate your answers.	
	(6)

- **6** The table shows some information about the structure and bonding in four substances.
 - (a) Complete the table.

(2)

Substa	nce	Structure	Bonding	Melting temperature / K
silicon(IV)	oxide	giant	covalent	1883
potassium o	chloride			1043
iron			metallic	1808
iodin	е		covalent	387

(b) Explain why the melting temperature of silicon(IV) oxide is much higher than that of iodine, even though the bonding in both is covalent.	(2)
	(3)

DO NOT WRITE IN THIS AREA

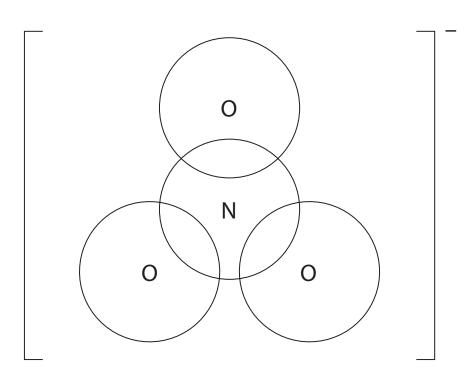
DO NOT WRITE IN THIS AREA

(c) Iron and potassium chloride both conduct electricity when molten. However, only iron conducts electricity when solid.	
Explain these observations.	(3)
	(3)
(Total for Question 6 = 8 ma	rks)

- 7 This question is about s-block elements and some of their compounds.
 - (a) Which list contains only s-block elements?

(1)

- A Li, Na, Mg and Cl
- **B** K, Ca, Co and Rb
- ☑ C Mg, Al, Sr and Ba
- D Be, Rb, Ba and Ra
- (b) Which pair of statements describes the trends down Group 2?


(1)

- \bowtie A
- **⋈** B
- X C
- \boxtimes D

Solubility of sulfates	Solubility of hydroxides
increases	increases
decreases	increases
decreases	decreases
increases	decreases

- (c) The s-block nitrates undergo thermal decomposition.
 - (i) Draw a dot-and-cross diagram for the nitrate(V) ion, NO₃, showing outer electrons only.

(1)

DO NOT WRITE IN THIS AREA

(ii) Write an equation for the thermal decomposition of lithium nitrate.

State symbols are **not** required.

(1)

(iii) The equation for the thermal decomposition of sodium nitrate is different from that for lithium nitrate.

$$NaNO_3(s) \rightarrow NaNO_2(s) + \frac{1}{2}O_2(g)$$

The gas produced is collected in a gas syringe.

Calculate the theoretical volume of gas, in **cm**³, that could be collected at 298 K and 101 kPa by the decomposition of 0.500 g of pure sodium nitrate. Give your answer to 2 significant figures.

$$[pV = nRT, R = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}]$$

(4)

(iv) State one reason why the experimental gas volume may differ from the calculated theoretical volume. Assume that no gas escapes and measurements have been made accurately.	(1)
(d) A textbook states, 'The thermal stability of Group 1 carbonates is generally higher than the thermal stability of Group 2 carbonates in the same period'. Explain why Group 1 carbonates are more thermally stable than Group 2 carbonates.	(3)
(Total for Question 7 = 12 ma	arks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- **8** This question is about some reactions of chlorine and hydrogen chloride.
 - (a) When hydrogen gas and chlorine gas are mixed and passed over a hot platinum catalyst, hydrogen chloride gas is formed.

The equation for this reaction is

$$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$$

In an experiment, 20 cm³ of dry hydrogen gas was reacted with 20 cm³ of dry chlorine gas.

All gas volumes were measured at room temperature and pressure (r.t.p.).

Calculate the number of gas molecules in the product at r.t.p.

[Molar volume of a gas at r.t.p. = $24\,000\,\mathrm{cm^3\,mol^{-1}}$ Avogadro constant (L) = $6.02\times10^{23}\,\mathrm{mol^{-1}}$]

(2)

(i)	Hydrogen chloride gas does not conduct electricity. Hydrochloric acid is a good conductor of electricity.	
	Give a reason for this change in conductivity.	(1)
(ii)	When concentrated hydrochloric acid on a glass rod is held above a concentrated ammonia solution, a white smoke is observed.	
	Write an equation, including state symbols, for the reaction that produces the white smoke.	
		(2)
,,,,		
(III)	Hydrochloric acid is added to a test tube containing a sample of solid sodium carbonate.	
	Give two observations.	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(iv) Describe an experiment to enable you to accurately determine the concentration of an approximately 1 mol dm ⁻³ solution of hydrochloric acid, using a solution of sodium hydroxide of concentration 1.00 mol dm ⁻³ .										
Details of the calculation are not required.	(5)									

(c) Chlorine can be produced by reacting concentrated hydrochloric acid with manganese(IV) oxide.

The equation for this reaction is

$$4HCl(aq) \ + \ MnO_2(s) \ \rightarrow \ MnCl_2(aq) \ + \ Cl_2(g) \ + \ 2H_2O(l)$$

(i) Deduce the half-equation for the formation of chlorine.

(1)

(ii) A student reacted 5.0 cm³ of 5.0 mol dm⁻³ hydrochloric acid with an excess of manganese(IV) oxide. 70 cm³ of chlorine gas was produced.

The teacher said the expected percentage yield of the experiment is 75%.

Determine whether the student achieved the expected percentage yield.

[Molar volume of a gas at r.t.p. = $24000 \,\mathrm{cm}^3 \,\mathrm{mol}^{-1}$]

(4)

(d) Chlorine reacts with hot concentrated aqueous sodium hydroxide to produce sodium chlorate(V) as one of the products.

The equation for this reaction is

$$3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$$

(i) Explain, using oxidation numbers, why this is a disproportionation reaction.

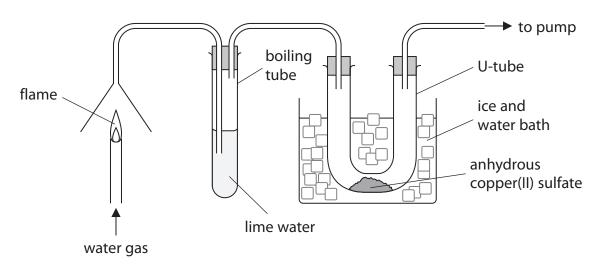
(2)

(ii) Calculate the atom economy, by mass, of sodium chlorate(V) in this reaction.

(3)

(Total for Question 8 = 22 marks)

- **9** Water gas is a fuel gas consisting of a mixture of carbon monoxide and hydrogen.
 - (a) Water gas is produced by passing steam over white hot coke.

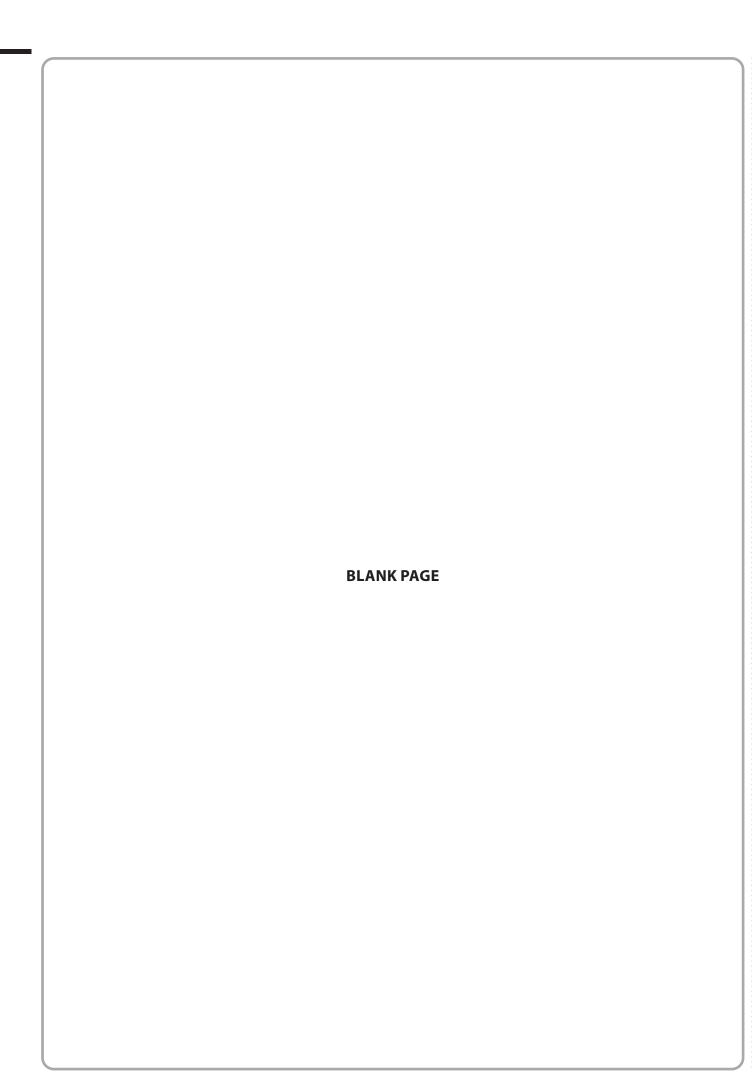

The equation for the reaction is shown.

$$H_2O(g) + C(s) \rightarrow CO(g) + H_2(g)$$

Calculate the total mass of products when 1000 kg of steam reacts completely.

(2)

(b) The complete combustion of water gas produces carbon dioxide and water. A student drew a diagram of the apparatus to attempt to identify the combustion products.



Evaluate whether the student's apparatus is suitable for identifying both of the combustion products. Include any improvements needed.

(5)

(Total for Question 9 = 7 marks)

TOTAL FOR PAPER = 80 MARKS

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

BLANK PAGE

		- 4. E		2	<u> </u>		6			<u></u>			m		<u></u>	<u> </u>	_	<u> </u>]											
	0 (8)	(18) 4.0 He helium	7	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	ᆇ	krypton 36	131.3	×	xenon 54	[222]	윤	radon 86		ted							_			
	7	Ĺ	(11)	19.0	ᄔ	fluorine 9	35.5	ָ ט	chlorine 17	6.62	P.	bromine 35	126.9	П	iodine 53	[210]	Αt	astatine 85		been repor		175	ב	lutetium 71	[257]	Lr lawrencium	2			
	9		(01)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	<u>e</u>	tellurium 52	[209]	S	polonium 84		116 have l	ווכמופת	173	Yb	ytterbium 70	[254]	No nobelium	107			
	2	(4)	(61)	14.0	z	nitrogen 7	31.0	۵.	phosphorus 15	74.9	As	arsenic 33	121.8	Sb	antimony 51	209.0	æ	bismuth 83		nbers 112-	טטר ווטר וטווץ מטנוופוונונמנפט	169	H	thulium 69	[256]	Md mendelevium	2			
	4	3	(14)	12.0	U	carbon 6	28.1		silicon 14	72.6	ge	germanium 32	118.7	Sn	ti 20 ti	207.2	Pp	lead 82		atomic nur	חחר	167	Ъ	erbium 68	[253]	Fm fermium	3			
	ю	Ç	(13)	10.8	Ω	boron 5	27.0	4	aluminium 13	2.69		gallium g 31	114.8	Г	indium 49	204.4	F	thallium 81	;	Elements with atomic numbers 112-116 have been reported but not fully authenticated		165	운	holmium 67	[254]	Es einsteinium oo	,, 			
ents									(12)	65.4	Zu	zinc 30	112.4	B	cadmium 48	200.6	Ę	mercury 80		Elem		163	ρ	dysprosium 66	[251]	Cf Es californium einsteinium	۶			
Elem									(11)	63.5	Cn	copper 29	107.9	Ag	silver 47	197.0	Αu	plog 79	[272]	Rg	roenigemum 111	159		terbium 65	[245]	BK berkelium on a	1			
e of											(10)	58.7	Ë	nickel 28	106.4	Pd	palladium 46	195.1	<u>۲</u>	platinum 78	[271]			157	рg	gadolinium 64	[247]	Carium Carium	70	
Tabl											(6)	58.9	ပိ	cobalt 27	102.9	몺	rhodium 45	192.2	Ţ	iridium 77	[368]	, Mt	meitherium gamstadtium 109 110	152	Eu	europium 63	[243]	Am americium os	52	
riodic		1.0 H hydrogen								(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	S	osmium 76	[277]		108	150	Sm	samarium 62	[242]	Pu plutonium	7,		
The Periodic Table of Elements									(7)	54.9	Wn	manganese 25	[86]	ည	technetium 43	186.2	Re	rhenium 75	—		107	[147]	Pm	promethium 61	[237]	Np neptunium 93	2			
È				mass	To:	umber			(9)	52.0	ڻ	chromium manganese 24 25	95.9	Wo	molybdenum technetium 42 43	183.8	>	tungsten 74	[596]	Sg	seaborgium 106	144	P	neodymium 60	238	U uranium 92	7,			
		Key	ney	relative atomic mass	atomic symbol	name atomic (proton) number			(5)	50.9		vanadium 23	92.9	Q	niobium 41	180.9	Та	tantalum 73			105	141	Pr	praseodymium neodymium promethium 59 60 61	[231]	Pa protactinium 91	<u>-</u>			
				relati	relati	relati	relati	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Ħ	hafnium 72	[261]	¥ ₹	rutnerroranum 104	140		cerium p	232	thorium	2
									(3)	45.0	Sc Scandium 21		88.9	>	yttrium 39	138.9	La*	lanthanum 57	[227]		_		Ş							
	7	Ć	(7)	0.6	Be	beryllium 4	24.3	Mg	magnesium 12	40.1		calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium l	[526]	Ra	88 88		* Lanthanide series	* Actinide series						
	-	Ę	(1)	6.9	בי	lithium 3	23.0		sodium 11	39.1	¥	potassium 19	85.5		rubidium 37	132.9	S	caesium 55	[223]	Fr francium	francium 87		* Lanth	* Actini						