

GCE

Chemistry B (Salters)

H433/03: Practical skills in chemistry

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

H433/03

Mark Scheme

1. Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

H433/03

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
✓	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

9 **Mark Scheme**

Q	uestion	Answer	Mark	AO	Guidance
1	(a)	Tollens' reagent/Ammoniacal silver (nitrate) \checkmark	4	1.2 2.1,2.1	ALLOW misspellings that are clearly meant to be Tollens e.g. Tollings Not silver nitrate alone, but allow ammoniacal silver nitrate/silver nitrate + ammonia
		red / orange (precipitate/solid) ✓		2.3	ALLOW one mark if two correct structural (but not skeletal) formulae used ALLOW colour change on its own
1	(b)	(butan-2-ol is) secondary; ✓	2	2.5	
		Secondary: two 'R' groups/ carbon atoms OR (only)1 hydrogen attached to the C with the OH \checkmark		1.2	
1	(c)	$\begin{array}{c} \begin{array}{c} CH_3 \\ CH_3 - C - CH_3 \\ \bullet \\ H \end{array} \xrightarrow{CH_3} CH_3 \mathsf{C$	2		Arrows should start at bond/lone pair and finish at + ve charge. If extra arrows any extra are a CON of one mark.
		^{H⁺} Each arrow ✓✓		2 x 2.1	

1433/03 Paj		rk Scheme		October 202
1 (d)	 Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question Level 3 (5 – 6 marks) Detailed instructions on how to separate chloroalkane a remove all impurities. Including most of fine detail There is a well-developed line of reasoning which is cleat and logically structured. The information presented is relevant and substantiated. Level 2 (3 – 4 marks) Detailed instructions (with most of fine detail) on two of main procedural techniques OR general instructions on at least three (i.e. little fine detail main procedures discussed) There is a line of reasoning presented with some structur The information presented is relevant and supported by some evidence. Level 1 (1 – 2 marks) General instructions on at least one area with little or no detail There is some attempt at a logical structure with a line or reasoning. The information present is in the most part relevant. Level 0 (no marks) No response or no response worthy of credit 	nd r tail re. fine	3.3(x3) 3.4(x3)	 Indicative scientific points may include: Main points and (fine detail) Separation transfer to separating funnel (chloroalkane will form top layer) run off lower aqueous layer ALLOW pipette off top organic layer Removal of acid impurities shake organic product with sodium hydrogen carbonate solution (ALLOW sodium carbonate solution) (add small volumes at a time) (release pressure of CO₂) (keeping adding until no effervescence) Removal of water transfer upper/organic layer to conical flask add <u>anhydrous</u> sodium sulfate/calcium chloride/magnesium sulfate/other suitable drying agent (swirl mixture) (decant off liquid) Obtaining pure chloroalkane distillation collect liquid at boiling point of product
	T	otal 14		

	11
Mark	Scheme

H433/03 Paper D

October 2021

C	Questic	n	Answer	Mark	AO	Guidance
2	(a)		primary - sequence/order of amino acids ✓	3	3 x 1.1	NOT chain
			<pre>secondary (folding of 1^y structure into) {β} (sheet) and {α} (helices) ✓</pre>			Mention of α and β - BOD mark
			tertiary - folding of secondary structure/ sheets and helices ✓			ALLOW 3D structure of (entire) protein / overall structure
2	(b)	i	dashed line is bond/part of molecule going behind/into plane of paper/faces backwards wedge bond/part of molecule coming out/in front of plane of paper/faces forwards ✓	1	1.1	Both explanations required to score mark
2	(b)	ii	$\begin{array}{c c} 0 & 0 \\ \hline 0 & 0 \\$	2	2 x 2.7	
2	(C)	i	a part of a molecular structure that is responsible for a particular biological or pharmacological/medicinal activity/AW ✓	1	1.1	
2	(c)	ii	$\begin{array}{c c} OH & OH \\ H & R_2 \\ \hline R_1 \\ \hline H \\ \hline R_2 \\ \hline R_1 \\ \hline H \\ \hline R_2 \\ \hline R_1 \\ \hline H \\ \hline H \\ \hline R_2 \\ \hline R_1 \\ \hline H \hline \hline H \\ \hline H \\ \hline H \\ \hline H \hline \hline H$	3	1.1 2.1 2.2	 ALLOW any correct object and mirror image. ALLOW dotted lines instead of dotted wedges. ALLOW etc If there are two ordinary lines (as opposite) they must not be at 180° to each other. ALLOW carbon with 4 different groups/atoms attached. Read other as different. <u>NOT</u> just cannot be superimposed

H43	12 H433/03 Paper D 12 October 2021							
2	(c)	iii	active sites also chiral ✓ cannot interact/fit with receptor/active sites ✓	2	2 x 3.2	Mark separately ORA		
2	(d)		first order only initially/lower substrate concentration \checkmark because rate proportional to concentration \checkmark graph flattens, zero order at high \checkmark	3	3 x 3.2	CHECK graph, answer sometimes written there		
			Total	15				

Q	Question		Answer		AO	Guidance
3	(a)	i	$CI_2 + 2I^- \rightarrow I_2 + 2CI^- \checkmark$	1	2.5	IGNORE state symbols; must be balanced
	(a)	ii	purple: solution of iodine in cyclohexane	1	3.1	Use of ions CONS mark
			brown: solution of iodine in water/aqueous solution of iodine \checkmark			ALLOW I ₃ - (aq)
3	(b)	i	CHECK ANSWER ON ANSWER LINE If answer = 144 mg, award 4 marks mole $S_2O_3^{2^-} = 0.0142 \times 0.001 = 1.42 \times 10^{-5} \checkmark$ mole I_2 from 25 cm ³ = above $\div 2 = 0.71 \times 10^{-5}$ total moles of iodide in 25 cm ³ = 0.71 x 10^{-5} x 4 = 2.84 x 10^{-5} \checkmark	4	3 x 2.4	ALLOW ecf at all stages
			concentration =above x 40 = $1.136 \times 10^{-3} \text{ mol dm}^{-3} \checkmark$ mg dm ⁻³ = above x 126.9= $0.1442g$ = 144 mg dm ⁻³ to 3sf's \checkmark		3.1	Look for <i>1</i> 0.025 instead of x 40 If not 3sf - CON
3	(b)	ii	S oxidation state changes from +2 to $+2\frac{1}{2}$ increase in oxidation state/number is oxidation $$	2	2 x 2.8	
3	(c)		Iodine: (diatomic) (small) molecule ✓ Potassium iodide: (giant) ionic (lattice) ✓ Polar water molecules attracted to +ve and -ve ions in KI ✓ Little interaction/id-id with non-polar iodine molecule and water✓	4	1.2 2.1 2.1 2.2	ALLOW simple aka 'small'
			Total	12		

H433/03 Paper D

13 **Mark Scheme**

October 2021

C	Questio	n	Answer	Mark	AO	Guidance
4	(a)	(i)	[H ⁺] = $\sqrt{\text{Ka x [propanoic acid]}}$ = $\sqrt{1.3 \times 10^{-5} \times 0.5}$ = 2.55 x 10 ⁻³ ✓ pH = -log above = 2.59/2.6 (not 2.5)✓	2	2 x 3.1	4(a)(i), 4(a)(ii) and 4(c) need pH as answer
		(ii)	conc HCl = 20 x 0.05/50 = 0.02 \checkmark pH = -log above = 1.7, so correct \checkmark	2	2 x 3.1	Second mark dependent on first being scored (ecf based on pH = -log[H ⁺ } only allowed once (i.e. on 4a(i) }
	(b)		$C_2H_5COO^-$ + $H_2O \Rightarrow C_2H_5COOH$ + $OH^- \checkmark$ $C_2H_5COO^-$ (accepting protons/H ⁺ therefore) behaving as an base ✓ conjugate acid propanoic acid (molecule) ✓	3	1.2 2.5 2.6	ALLOW structural formulae ALLOW with Na⁺ Must have ⇒
	(c)		amount C ₂ H ₅ COONa = 2.4/96 = 0.025 mol \checkmark [H ⁺] = K _a x [acid] [salt] (AW) \checkmark [H ⁺] = 1.3 x 10 ⁻⁵ x either mole ratio 0.015/0.025 or concentration ratio 0.5/0.833 \checkmark = 7.8 x 10 ⁻⁶ , so pH = 5.1 \checkmark	4	4 x 3.2	Do not allow ecf if already used on 4(a) Allow with values in H⁺ expression

H433/03 Pap		heme	October 2021
4 (d)*	 Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5 – 6 marks) Selects mixture as buffer (and not other two) with most 'choice' points. Adds most explanation points with most equations. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3 – 4 marks) Selects mixture (and not other two) as buffer with some choice points and some explanation points There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1 – 2 marks) Not clear which is buffer but gives some relevant points from choice and explanation/equations OR Selects mixture as buffer and gives some other relevant points. There is some attempt at a logical structure with a line of reasoning. The information present is in the most part relevant. Level 0 (no marks) 	6 2 x 3.1 2 x 1.2 2 x 2.2	 Mixture/Solution C is buffer since it resists changes in pH on: addition of small amounts of acid addition of small amounts of alkali dilution Acid and Base/salt not buffers since vary when changed as above.

H433/03 Pa	15 per D Mark So			October 2021
e	amines are proton/H ⁺ acceptors✓ H ⁺ R - N - H H Amine OR lone pair of electrons on N ✓	2	1.1 2.1	base as proton acceptor / electron pair donator proton/ H ⁺ acceptor shown by equation second mark for idea that it is lone pair on N atom that can form (dative) bond to H ⁺
	Total	19		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

