Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature	I declare this is my own work.	

AS CHEMISTRY

Paper 2 Organic and Physical Chemistry

Thursday 21 May 2020 Morning Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

For Examiner's Use			
Question	Mark		
1			
2			
3			
4			
5			
6			
7			
8			
Section B			
TOTAL			

			Section A			
		Answe	er all questions in	this section.		
0 1	This question	is about 1-	chloropropane.			
0 1.1	Define the ter	m standard	l enthalpy of forma	ation.		[2 marks]
01.2	30	H ₃ CH ₂ CH ₂	OH(I) + PCl ₃ (I) -	facture 1-chloroprop $\rightarrow 3 CH_3 CH_2 CH_2 Cl($		
		-	this reaction, ΔH_{i}			
	I able 1 conta	ains some s		of formation data.		
			Та	ble 1		
	Subst	ance	PCl ₃ (I)	CH ₃ CH ₂ CH ₂ Cl(I)	H ₃ PO ₃ (s)	
	∆f H ^o /	kJ mol⁻¹	-339	-130	-972	
			standard enthalp reaction and data	y of formation of pro from Table 1 .	opan-1-ol using	g the [3 marks]
	Sta	andard enth	nalpy of formation			kJ mol⁻¹

Do not write outside the box

	1 oblevenues and also be preduced by the reaction between survey and the '	Do no outsio
0 1 3	1-chloropropane can also be produced by the reaction between propane and chlorine in the presence of ultraviolet light.	
	State why ultraviolet light is needed for this reaction to occur.	
	Give an equation for each propagation step in the formation of 1-chloropropane from propane.	
	[3 marks]	
	Why ultraviolet light is needed	
	Propagation step 1	
	Propagation step 2	
0 1.4	The C–Cl bond in 1-chloropropane is polar because carbon and chlorine have	
	different electronegativities.	
	Define the term electronegativity. [1 mark]	
	Question 1 continues on the next page	

		Do not write outside the
0 1 . 5	Ammonia reacts with 1-chloropropane to form propylamine.	box
	Name and outline the mechanism for this reaction. [5 marks]	
	Outline of mechanism	
		14

02	A student investigates the effect of temperature on the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid.						
	Na ₂ S ₂ O ₃ (aq) +	+ 2 HCl(aq)	$) \rightarrow 2 \text{NaC}$	Cl(aq) + S0	D ₂ (g) + S((s) + H ₂ O(I))
	The student mixes the sc paper marked with a cros	-	jether in a	flask and	places th	e flask on a	a piece of
	The student records the t because the mixture bec			disappear	. The cro	ss disappe	ars
	Table 2 shows the stude	nt's results	6.				
			Table	2			
	Temperature / °C	22	31	36	42	49	54
	Time, t, for cross to disappear / s	87	48	36	26	44	12
	$\left \frac{1}{t}\right/s^{-1}$	0.0115	0.0208	0.0278	0.0385	0.0227	
	The student uses a stopwatch to measure the time. The stopwatch shows each to the nearest 0.01 s Suggest why the student records the times to the nearest second and not to the nearest 0.01 s [1]				o the [1 mark]		
02.2	The rate of reaction is pro	oportional	to $\frac{1}{t}$				
	Complete Table 2 .						[1 mark]

0 2 4	Use your line of best fit to estimate the time for the cross to disappear at 40 $^\circ\text{C}$ Show your working.	Do not write outside the box
	[1 mark]	
	Times	
0 2.5	Suggest, by considering the products of this reaction, why small amounts of reactants are used in this experiment.	
	[1 mark]	
02.6	The student could do the experiment at lower temperatures using an ice bath.	
	Suggest why the student chose not to carry out experiments at temperatures in the	
	range 1–10 °C [1 mark]	
		<u> </u>

In each method, the student uses 1.00 g of organic starting material.

The yield of methylpropanal obtained using each method and other data are included in **Table 3**.

Table	3
-------	---

	Method 1	Method 2
Yield of methylpropanal / mg	552	778
Percentage yield		80.0%
Percentage atom economy	62.1%	

Calculate the percentage yield for Method 1.

Calculate the percentage atom economy for Method 2.

State the importance of percentage yield and percentage atom economy when choosing the method used to make a compound.

[6 marks]

% yield	
Importance of percentage yield	
% atom economy	
Importance of percentage atom economy	

0 4	This question is about pentan-2-ol and pent-1-ene.	Do not write outside the box
0 4.1	The boiling point of pentan-2-ol is 119 °C The boiling point of pent-1-ene is 30 °C Explain why pentan-2-ol has a higher boiling point than pent-1-ene. [3 marks]	I
		-
		-
		-
1 2	IB/M/Jun20/7404	/2

04.2	Pent-1-ene is formed by the elimination of water from pentan-2-ol.	Do not write outside the box
	State the reagent and condition for this reaction.	
	Outline the mechanism for this reaction. [5 marks]	
	Reagent	-
	Condition	
	Outline of mechanism	
		8
	Turn over for the next question	

Turn over ►

0 6	This question is about poly(chloroethene), commonly known as PVC.	Do not write outside the box
06.1	Give an equation, showing structural formulas, for the conversion of chloroethene into poly(chloroethene).	
	[3 marks]	
06.2	State what you would observe if bromine water was added to poly(chloroethene).	
	Explain this observation. [2 marks]	
	Observation	
	Explanation	
0 6.3	Plasticisers are often added during the manufacture of PVC. The structure of the plasticiser DEHP is shown.	
	Deduce the molecular formula of DEHP and state why a plasticiser is added to PVC.	
	[2 marks]	
	Molecular formula	
	Why a plasticiser is added	
		7

0 7	This question is about ethanedioic acid $(H_2C_2O_4)$ which is a dicarboxylic acid.	Do not write outside the box
0 7.1	Draw the skeletal formula of ethanedioic acid. [1 mark]	
0 7.2	Ethanedioic acid is formed by the oxidation of ethane-1,2-diol (HOCH ₂ CH ₂ OH).	
	State suitable reagent(s) and a condition for this reaction. [2 marks]	
	Reagent(s)	
	Condition	
	Question 7 continues on the next page	

0 7 . 3 Ethanedioic acid reacts with an excess of sodium hydroxide to form sodium ethanedioate.

 $H_2C_2O_4(aq) + 2\,NaOH(aq) \rightarrow Na_2C_2O_4(aq) + 2\,H_2O\left(I\right)$

A student mixes 10.0 cm^3 of $0.400 \text{ mol dm}^{-3}$ ethanedioic acid with 50.0 cm^3 of $0.200 \text{ mol dm}^{-3}$ sodium hydroxide.

Show that the sodium hydroxide is in excess.

Calculate the mass, in mg, of sodium ethanedioate that can be formed in this reaction.

[5 marks]

Mass of sodium ethanedioate _____ mg

Do not write outside the box

08	Hydro cataly	ogen gas can be made by reacting	g ethanol with	ı steam in	the prese	ence of a	Do no outsio bo
		$C_2H_5OH(g) + H_2$	O(g)	9(g) + 4 H ₂	<u>e(g)</u>		
0 8.1	Give	an expression for $\mathcal{K}_{ ext{c}}$ for this equil	ibrium.				
	State	its units.				[2 marks]	
	Kc						
			Units	of <i>K</i> c			
08.2	Table in a c	e 4 shows the amount of each sub container of volume 750 cm ³	ostance in an	equilibriu	m mixture		
			Table 4				
		Substance	C ₂ H ₅ OH(g)	H ₂ O(g)	CO(g)	H ₂ (g)	
		Amount of substance / mol	0.0750	0.156	0.110	0.220	
	Calcu	late K_{c}				[3 marks]	
		Kc					
		Question 8 continues	on the next	page			
						Turn over ►	

0 8.3	The pressure of the equilibrium mixture was increased by reducing the volume of the	Do not write outside the box
	container at constant temperature.	
	Predict the effect of increasing the pressure on the equilibrium yield of hydrogen. Explain your answer.	
	Predict the effect of increasing the pressure on the value of <i>K</i> _c [4 marks]	
	Effect on equilibrium yield of hydrogen	
	Explanation	
	Effect on value of K _c	
		9

 A represente botteen roo und zoo ki u is deed. B Aromatic hydrocarbons are the major products. C C-C bonds are broken. D Zeolite catalysts are used. D Zeolite catalysts are used. M hich statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 	Section B
For each answer completely fill in the circle alongside the appropriate answer. CORRECT METHOD WRONG METHODS If you want to change your answer you must cross out your original answer as shown If you wish to return to an answer previously crossed out, ring the answer you now with as shown. You may do your working in the blank space around each question but this will not be Do not use additional sheets for this working. Image: Description of the blank space around each question but this will not be Do not use additional sheets for this working. Image: Description of the blank space around each question but this will not be Do not use additional sheets for this working. Image: Description of the blank space around each question but this will not be Do not use additional sheets for this working. Image: Description of the blank space around each question but this will not be Do not use additional sheets for this working. Image: Description of the blank space around each question but this will not be Do not use additional sheets for this working. Image: Description of the blank space around each question but this will not be Do not use additional sheets for this working. Image: Description of the blank space around each question but this will not be Do not use additional sheets for this working. Image: Description of the blank space around each question but this will not be Do not use additional sheets for this working. Image: Description of the blank space around each question but this will not be Do not use addition in the upper atmosph	Answer all questions in this section.
For each answer completely fill in the circle alongside the appropriate answer. CORRECT METHOD WRONG METHODS 	
If you want to change your answer you must cross out your original answer as shown If you wish to return to an answer previously crossed out, ring the answer you now with as shown. You may do your working in the blank space around each question but this will not be Do not use additional sheets for this working. Image: Imag	
If you wish to return to an answer previously crossed out, ring the answer you now wish as shown. You may do your working in the blank space around each question but this will not be Do not use additional sheets for this working. U 9 Which statement is correct about thermal cracking? A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C–C bonds are broken. D Zeolite catalysts are used. 1 0 Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen.	RONG METHODS 🗴 👁 🔿
as shown. You may do your working in the blank space around each question but this will not be Do not use additional sheets for this working. 0 9 Which statement is correct about thermal cracking? A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C-C bonds are broken. D Zeolite catalysts are used. 1 0 Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen.	swer you must cross out your original answer as shown. 🔀
Do not use additional sheets for this working. 0 9 Which statement is correct about thermal cracking? A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C-C bonds are broken. D Zeolite catalysts are used. M It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen.	wer previously crossed out, ring the answer you now wish to select
 A A pressure between 100 and 200 kPa is used. B Aromatic hydrocarbons are the major products. C C-C bonds are broken. D Zeolite catalysts are used. 1 0 Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 	
 B Aromatic hydrocarbons are the major products. C C-C bonds are broken. D Zeolite catalysts are used. I D Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen. 	is correct about thermal cracking? [1 mark]
C C-C bonds are broken. D Zeolite catalysts are used. I O Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen.	tween 100 and 200 kPa is used.
D Zeolite catalysts are used. 1 0 Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen.	ocarbons are the major products.
1 0 Which statement is not correct about ozone? A It absorbs harmful ultraviolet radiation in the upper atmosphere. B It decomposes to form oxygen.	e broken.
A It absorbs harmful ultraviolet radiation in the upper atmosphere.	ts are used.
A It absorbs harmful ultraviolet radiation in the upper atmosphere.	is not correct about ozone?
B It decomposes to form oxygen.	[1 mark
	mful ultraviolet radiation in the upper atmosphere.
C Its decomposition is catalysed by chlorine molecules.	to form oxygen.
	tion is catalysed by chlorine molecules.
D Ozone holes are regions of the upper atmosphere where there is a reduced concentration of ozone.	

			Do not write outside the
1 1	What is the IUPAC name for this compound?		box
	CH ₃		
	$CH_3 - CH_2 - CH - CH_3$ F CH_3		
	F CH ₃	[4. w. e. v. k.]	
		[1 mark]	
	A 2-dimethyl-3-fluoropentane	0	
	B 2,2-dimethyl-3-fluoropentane	0	
	C 3-fluoro-2,2-dimethylpentane	0	
	D 3-fluoro-2-dimethylpentane	0	
1 2	What is the IUPAC name of the major product of the reaction betweer 2-ethylbut-1-ene and hydrogen bromide?	ı	
		[1 mark]	
	A 1-bromo-2-ethylbutane	0	
	B 2-bromo-2-ethylbutane	0	
	C 2-bromo-2-methylpentane	0	
	D 3-bromo-3-methylpentane	0	
1 3	Which can be used to distinguish between these two compounds?		
	(CH ₃) ₂ CHCH ₂ CHO and (CH ₃) ₃ CCHO	[1 mark]	
	A Acidified potassium dichromate(VI)	0	
	B Fingerprint region of infrared spectrum	0	
	C $M_{\rm r}$ value in high resolution mass spectrometry	0	
	D Tollens' reagent	0	

 A ethanoic acid 1-fluoropropane propanenitrile propylamine 18 Which statement is correct about the production and use of ethanol as biofuel? [1 mark] A Biofuel ethanol is produced by the fermentation of glucose in the presence of yeast and air. B Biofuel ethanol is purified by fractional distillation. C No carbon dioxide is released when biofuel ethanol is burned. D Biofuel ethanol burns with a cleaner flame than ethanol made by or hydration of ethene.
C propanenitrile D propylamine D propylamine D propylamine D production and use of ethanol as a biofuel? [1 mark] A Biofuel ethanol is produced by the fermentation of glucose in the presence of yeast and air. B Biofuel ethanol is purified by fractional distillation. C No carbon dioxide is released when biofuel ethanol is burned. D Biofuel ethanol burns with a cleaner flame than ethanol made by D
D propylamine Image: Constraint of the production and use of ethanol as a biofuel? 18 Which statement is correct about the production and use of ethanol as a biofuel? [1 mark] A Biofuel ethanol is produced by the fermentation of glucose in the presence of yeast and air. Image: Constraint of the presence of yeast and air. B Biofuel ethanol is purified by fractional distillation. Image: Constraint of the presence of yeast and air. Image: Constraint of the presence of yeast and air. B Biofuel ethanol is purified by fractional distillation. Image: Constraint of the presence of yeast and air. Image: Constraint of the presence of yeast and air. B Biofuel ethanol is purified by fractional distillation. Image: Constraint of the presence of yeast and air. Image: Constraint of the presence of yeast and air. B Biofuel ethanol is purified by fractional distillation. Image: Constraint of the presence of yeast and air. Image: Constraint of the presence of yeast and air. B Biofuel ethanol is purified by fractional distillation. Image: Constraint of the presence of yeast and air. Image: Constraint of the presence of yeast and air. D Biofuel ethanol burns with a cleaner flame than ethanol made by Image: Constraint of the presence of yeast and yeast a
1 8 Which statement is correct about the production and use of ethanol as a biofuel? [1 mark] A Biofuel ethanol is produced by the fermentation of glucose in the presence of yeast and air. • B Biofuel ethanol is purified by fractional distillation. • C No carbon dioxide is released when biofuel ethanol is burned. • D Biofuel ethanol burns with a cleaner flame than ethanol made by •
 [1 mark] A Biofuel ethanol is produced by the fermentation of glucose in the presence of yeast and air. B Biofuel ethanol is purified by fractional distillation. C No carbon dioxide is released when biofuel ethanol is burned. D Biofuel ethanol burns with a cleaner flame than ethanol made by
 presence of yeast and air. B Biofuel ethanol is purified by fractional distillation. C No carbon dioxide is released when biofuel ethanol is burned. D Biofuel ethanol burns with a cleaner flame than ethanol made by
 C No carbon dioxide is released when biofuel ethanol is burned. D Biofuel ethanol burns with a cleaner flame than ethanol made by
D Biofuel ethanol burns with a cleaner flame than ethanol made by
1 9 What is the minimum volume of 0.0500 mol dm ⁻³ aqueous bromine needed to react completely with 0.0200 g of buta-1,3-diene?
(<i>M</i> _r of buta-1,3-diene = 54.0) [1 mark]
A 7.40 cm ³
B 14.8 cm ³
C 29.6 cm ³
D 67.5 cm ³

Do not write outside the 2 0 box Which statement about the molecules in a sample of a gas is correct? [1 mark] \bigcirc **A** At a given temperature they all move at the same speed. \bigcirc **B** At a given temperature their average kinetic energy is constant. C As temperature increases, there are more molecules with the \bigcirc most probable energy. D As temperature decreases, there are fewer molecules with the \bigcirc mean energy. 2 1 Some enthalpy change data are shown. $C(s) + 2 \, H_2(g) \to CH_4(g)$ $\Delta H = -75 \text{ kJ mol}^{-1}$ $H_2(g) \rightarrow 2 H(g)$ $\Delta H = +436 \text{ kJ mol}^{-1}$ What is the enthalpy change, in kJ mol⁻¹, for the following reaction? $CH_4(g) \rightarrow C(s) + 4H(g)$ [1 mark] **A** -947 \bigcirc **B** -361 \bigcirc **C** +361 \bigcirc **D** +947 \bigcirc Turn over for the next question

Turn over ►

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright $\ensuremath{\textcircled{O}}$ 2020 AQA and its licensors. All rights reserved.

