AQA

Please write clearly in block capitals.
Centre number \square Candidate number

Surname
Forename(s)
Candidate signature I declare this is my own work.

AS

CHEMISTRY

Paper 2 Organic and Physical Chemistry

Thursday 21 May 2020
Morning
Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
Section B	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

Section A

Answer all questions in this section.

| $\mathbf{0}$ | 1 |
| :--- | :--- | This question is about 1-chloropropane.

0	1	1

\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{2}$ The equation for a reaction used to manufacture 1-chloropropane is

$$
3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})+\mathrm{PCl}_{3}(\mathrm{I}) \rightarrow 3 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(\mathrm{I})+\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{~s})
$$

The enthalpy change for this reaction, ΔH, is $-114 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Table 1 contains some standard enthalpy of formation data.
Table 1

Substance	$\mathrm{PCl}_{3}(\mathrm{I})$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(\mathrm{I})$	$\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{~s})$
$\Delta \mathrm{f}^{\circ} / \mathbf{~ k J ~ m o l}^{-1}$	-339	-130	-972

Calculate a value for the standard enthalpy of formation of propan-1-ol using the enthalpy change for the reaction and data from Table 1.
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$

| $\mathbf{0}$ | $\mathbf{1}$. | $\mathbf{3}$ 1-chloropropane can also be produced by the reaction between propane and chlorine |
| :--- | :--- | :--- | :--- | in the presence of ultraviolet light.

State why ultraviolet light is needed for this reaction to occur.
Give an equation for each propagation step in the formation of 1-chloropropane from propane.

Why ultraviolet light is needed \qquad
\qquad
\qquad
Propagation step 1

Propagation step 2

| 0 | 1 | 4 |
| :--- | :--- | :--- | The $\mathrm{C}-\mathrm{Cl}$ bond in 1-chloropropane is polar because carbon and chlorine have different electronegativities.

Define the term electronegativity.
\qquad
\qquad
\qquad

Question 1 continues on the next page

0	1	5	Ammonia reacts with 1-chloropropane to form propylamine.

Name and outline the mechanism for this reaction.

Name of mechanism
Outline of mechanism
 sodium thiosulfate solution and dilute hydrochloric acid.

$$
\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The student mixes the solutions together in a flask and places the flask on a piece of paper marked with a cross.

The student records the time for the cross to disappear. The cross disappears because the mixture becomes cloudy.

Table 2 shows the student's results.

Table 2

Temperature $/{ }^{\circ} \mathbf{C}$	22	31	36	42	49	54
Time, \mathbf{t}, for cross to disappear $/ \mathbf{s}$	87	48	36	26	44	12
$\frac{\mathbf{1}}{\mathbf{t}} \mathbf{s}^{-1}$	0.0115	0.0208	0.0278	0.0385	0.0227	

$\begin{array}{llll}\mathbf{0} & \mathbf{2} & \mathbf{1} \text { The student uses a stopwatch to measure the time. The stopwatch shows each time }\end{array}$ to the nearest 0.01 s

Suggest why the student records the times to the nearest second and not to the nearest 0.01 s
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2} .2$	$\mathbf{2}$ The rate of reaction is proportional to $\frac{1}{t}$

Complete Table 2.

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$ Plot the values of $\frac{1}{\mathrm{t}}$ against temperature on Figure 1.

Draw a line of best fit.

Figure 1

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{4}$ Use your line of best fit to estimate the time for the cross to disappear at $40^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | Show your working.

| $\mathbf{0}$ | $\mathbf{2}$ | . | $\mathbf{5}$ | Suggest, by considering the products of this reaction, why small amounts of reactants |
| :--- | :--- | :--- | :--- | :--- | are used in this experiment.

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{6}$ The student could do the experiment at lower temperatures using an ice bath.

Suggest why the student chose not to carry out experiments at temperatures in the range $1-10^{\circ} \mathrm{C}$
\qquad
\qquad

0	$\mathbf{3}$	A student investigates two experimental methods of making methylpropanal.

The equations for these two methods are shown.

Method 1

Method 2

$M_{\mathrm{r}}=74.0$
$M_{\mathrm{r}}=72.0$
In each method, the student uses 1.00 g of organic starting material.
The yield of methylpropanal obtained using each method and other data are included in Table 3.

Table 3

	Method 1	Method 2
Yield of methylpropanal / mg	552	778
Percentage yield		80.0%
Percentage atom economy	62.1%	

Calculate the percentage yield for Method 1.
Calculate the percentage atom economy for Method 2.
State the importance of percentage yield and percentage atom economy when choosing the method used to make a compound.

Importance of percentage yield \qquad
\qquad
\qquad
\qquad
\qquad
\% atom economy
Importance of percentage atom economy \qquad
\qquad
\qquad
\qquad

| 0 | 4 |
| :--- | :--- | This question is about pentan-2-ol and pent-1-ene.

| 0 | 4 | 1 |
| :--- | :--- | :--- | The boiling point of pentan-2-ol is $119^{\circ} \mathrm{C}$ The boiling point of pent-1-ene is $30^{\circ} \mathrm{C}$

Explain why pentan-2-ol has a higher boiling point than pent-1-ene.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ Pent-1-ene is formed by the elimination of water from pentan-2-ol.

State the reagent and condition for this reaction.
Outline the mechanism for this reaction.

Reagent \qquad
Condition
Outline of mechanism

Explain the differences between structural isomerism and stereoisomerism.
Use examples to show how compounds with the molecular formula $\mathrm{C}_{4} \mathrm{H}_{8}$ exhibit stereoisomerism and the three types of structural isomerism.
\qquad

0	6	This question is about poly(chloroethene), commonly known as PVC.

| $\mathbf{0}$ | $\mathbf{6} .1$ | $\mathbf{1}$ Give an equation, showing structural formulas, for the conversion of chloroethene into |
| :--- | :--- | :--- | poly(chloroethene).

 Explain this observation.
[2 marks]
Observation \qquad
Explanation \qquad
\qquad
\qquad

| $\mathbf{0}$ | 6 | 3 |
| :--- | :--- | :--- | Plasticisers are often added during the manufacture of PVC. The structure of the plasticiser DEHP is shown.

Deduce the molecular formula of DEHP and state why a plasticiser is added to PVC.

Molecular formula
Why a plasticiser is added \qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$	This question is about ethanedioic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ which is a dicarboxylic acid.

$\begin{array}{llll}0 & \mathbf{7} & 1 & \text { Draw the skeletal formula of ethanedioic acid. }\end{array}$

State suitable reagent(s) and a condition for this reaction.

Reagent(s) \qquad

Condition \qquad

Question 7 continues on the next page

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ | Ethanedioic acid reacts with an excess of sodium hydroxide to form |
| :--- | :--- | :--- | :--- | sodium ethanedioate.

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

A student mixes $10.0 \mathrm{~cm}^{3}$ of $0.400 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanedioic acid with $50.0 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide.

Show that the sodium hydroxide is in excess.
Calculate the mass, in mg , of sodium ethanedioate that can be formed in this reaction.
\qquad mg

08	Hydrogen gas can be made by reacting ethanol with steam in the presence of a catalyst.
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})+4 \mathrm{H}_{2}(\mathrm{~g})$
	Give an expression for K_{c} for this equilibrium.
	State its units. \quad [2 marks]
	$K_{\text {c }}$
	Units of K_{c}

Hydrogen gas can be made by reacting ethanol with steam in the presence of a

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{1}$ Give an expression for K_{c} for this equilibrium.

State its units.
K_{c}

Units of K_{c}

| 0 | 8 | 2 | Table 4 shows the amount of each substance in an equilibrium mixture |
| :--- | :--- | :--- | :--- | in a container of volume $750 \mathrm{~cm}^{3}$

Table 4

Substance	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	$\mathrm{CO}(\mathrm{g})$	$\mathrm{H}_{2}(\mathrm{~g})$
Amount of substance $/ \mathrm{mol}$	0.0750	0.156	0.110	0.220

Calculate K_{c}
\qquad

| $\mathbf{0}$ | $\mathbf{8}$. | $\mathbf{3}$ The pressure of the equilibrium mixture was increased by reducing the volume of the |
| :--- | :--- | :--- | container at constant temperature.

Predict the effect of increasing the pressure on the equilibrium yield of hydrogen. Explain your answer.

Predict the effect of increasing the pressure on the value of K_{c}

Effect on equilibrium yield of hydrogen

Explanation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Effect on value of K_{c} \qquad
\qquad

Section B

Answer all questions in this section.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD WRONG METHODS $\quad \infty \quad \odot \quad \not \square$
If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.

Which statement is correct about thermal cracking?

A A pressure between 100 and 200 kPa is used. \square
B Aromatic hydrocarbons are the major products.
C C-C bonds are broken.
D Zeolite catalysts are used. \square

$\mathbf{1}$	$\mathbf{0}$ Which statement is not correct about ozone?

A It absorbs harmful ultraviolet radiation in the upper atmosphere.
B It decomposes to form oxygen.
C Its decomposition is catalysed by chlorine molecules.
D Ozone holes are regions of the upper atmosphere where there is a reduced concentration of ozone.

$\mathbf{1}$	$\mathbf{1}$	What is the IUPAC name for this compound?

A 2-dimethyl-3-fluoropentane \square
B 2,2-dimethyl-3-fluoropentane \square
C 3-fluoro-2,2-dimethylpentane \square
D 3-fluoro-2-dimethylpentane \square

122 What is the IUPAC name of the major product of the reaction between 2-ethylbut-1-ene and hydrogen bromide?

A 1-bromo-2-ethylbutane

B 2-bromo-2-ethylbutane

C 2-bromo-2-methylpentane
D 3-bromo-3-methylpentane

| 1 | 3 |
| :--- | :--- | Which can be used to distinguish between these two compounds?

$$
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CHO} \text { and }\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCHO}
$$

A Acidified potassium dichromate(VI)
B Fingerprint region of infrared spectrum
C M_{r} value in high resolution mass spectrometry
D Tollens' reagent

| $\mathbf{1}$ | $\mathbf{4}$ An excess of methane reacts with chlorine in the presence of ultraviolet radiation. ${ }^{2}$. |
| :--- | :--- | :--- | What are the main products of this reaction?

A CCl 4 and H_{2}
B CCl_{4} and HCl
C $\mathrm{CH}_{3} \mathrm{Cl}$ and H_{2} \square
D $\mathrm{CH}_{3} \mathrm{Cl}$ and HCl

```
\sigma
```

| 1 | 5 |
| :--- | :--- | In which reaction does the inorganic reagent act initially as an electrophile?

A bromoethane with ethanolic potassium hydroxide
B chloroethane with aqueous sodium hydroxide \square

C ethane with chlorine \square
D ethene with concentrated sulfuric acid \square

16 What is the empirical formula of a hydrocarbon that contains 90% carbon by mass?

A $\mathrm{C}_{2} \mathrm{H}_{3}$

B $\mathrm{C}_{3} \mathrm{H}_{2}$

C $\mathrm{C}_{3} \mathrm{H}_{4}$
D $\mathrm{C}_{4} \mathrm{H}_{3}$

$\mathbf{1} \mathbf{7}$	Which compound has the lowest relative molecular mass?	
	[1 mark]	
	A ethanoic acid	0
	B 1-fluoropropane	0
	C propanenitrile	0
	D propylamine	0

| 1 | 8 |
| :--- | :--- | Which statement is correct about the production and use of ethanol as a biofuel?

A Biofuel ethanol is produced by the fermentation of glucose in the \square presence of yeast and air.

B Biofuel ethanol is purified by fractional distillation. \square
C No carbon dioxide is released when biofuel ethanol is burned. \square

D Biofuel ethanol burns with a cleaner flame than ethanol made by
 hydration of ethene.
1.9 What is the minimum volume of $0.0500 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous bromine needed to react completely with 0.0200 g of buta-1,3-diene?
$\left(M_{r}\right.$ of buta-1,3-diene $\left.=54.0\right)$

A $7.40 \mathrm{~cm}^{3}$

B $14.8 \mathrm{~cm}^{3}$

C $29.6 \mathrm{~cm}^{3}$
D $67.5 \mathrm{~cm}^{3}$ \square

A At a given temperature they all move at the same speed.

The uncertainty of each reading of the thermometer is $\pm 0.1^{\circ} \mathrm{C}$
What is the percentage uncertainty in the temperature change?

A 0.5%

B 1.0\%

C 3.8%

D 7.7%

23 An experiment is done to determine the enthalpy of combustion of a fuel using a calorimeter containing water.
b = mass of fuel burned $/ \mathrm{g}$
$w=$ mass of water heated $/ \mathrm{g}$
$\Delta T=$ temperature rise of water / K
$M_{\mathrm{r}}=$ relative molecular mass of fuel
$c=$ specific heat capacity of water $/ \mathrm{J} \mathrm{K}^{-1} \mathrm{~g}^{-1}$
Which expression gives the enthalpy of combustion (in $\mathrm{J} \mathrm{mol}^{-1}$), assuming there is no heat loss?

A $\quad-\frac{c w \Delta T M_{r}}{b}$

B $\quad-\frac{c b \Delta T M_{r}}{w}$

C $\quad-\frac{c b w M_{r}}{\Delta T}$
D $\quad-\frac{c b w \Delta T}{M_{r}}$

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE ANSWER IN THE/SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2020 AQA and its licensors. All rights reserved.

