AQA

Please write clearly in block capitals.

Centre number \square Candidate number \square

Surname
Forename(s) \qquad
Candidate signature \qquad

A-level

CHEMISTRY

Paper 2 Organic and Physical Chemistry

Tuesday 11 June 2019

Afternoon
Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
TOTAL	

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Complete the mechanism for the reaction of ammonia with 6-bromohexylamine to |
| :--- | :--- | :--- | form 1,6-diaminohexane.

Suggest the structure of a cyclic secondary amine that can be formed as a by-product in this reaction.

Mechanism

$$
\mathrm{NH}_{3}
$$

Cyclic secondary amine

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ | 1,6-Diaminohexane can also be formed in a two-stage synthesis starting from |
| :--- | :--- | :--- | :--- | 1,4-dibromobutane.

Suggest the reagent and a condition for each stage in this alternative synthesis.

Stage 1 reagent and condition
\qquad
Stage 2 reagent and condition
\qquad

| $\mathbf{0}$ | $\mathbf{1} \cdot 4$ Explain why 3 -aminopentane is a stronger base than ammonia. .4. |
| :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{5}$ Justify the statement that there are no chiral centres in 3-aminopentane.

\qquad

| $\mathbf{0}$ | $\mathbf{2}$ | A student prepared cyclohexene by heating cyclohexanol with concentrated |
| :--- | :--- | :--- | phosphoric acid. The cyclohexene produced was distilled off from the reaction mixture.

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{1}$ Complete the diagram of the apparatus used to distil the cyclohexene from the |
| :--- | :--- | :--- | :--- | reaction mixture at $83^{\circ} \mathrm{C}$.

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{2}$ The distillate was shaken with saturated sodium chloride solution. The cyclohexene |
| :--- | :--- | :--- | was separated from the aqueous solution using a separating funnel.

State why cyclohexene can be separated from the aqueous solution using the separating funnel.
\qquad
\qquad

The student dried this cyclohexene by adding a few lumps of anhydrous calcium chloride and allowing the mixture to stand.

Give one observation that the student made to confirm that the cyclohexene was dry.
\qquad
\qquad

| 0 | 2 | 4 | In this preparation, the student added an excess of concentrated phosphoric acid to |
| :--- | :--- | :--- | :--- | 14.4 g of cyclohexanol ($M_{\mathrm{r}}=100.0$).

The student obtained $4.15 \mathrm{~cm}^{3}$ of cyclohexene ($M_{\mathrm{r}}=82.0$).
Density of cyclohexene $=0.810 \mathrm{~g} \mathrm{~cm}^{-3}$
Calculate the percentage yield of cyclohexene obtained.
Give your answer to the appropriate number of significant figures.
\qquad

| 0 | 2 | $\mathbf{5}$ Cyclohexene reacts with bromine. |
| :--- | :--- | :--- | :--- |

Complete the mechanism for this reaction.

The isoprene monomer is a non-cyclic branched hydrocarbon that contains 88.2 \% carbon by mass.

The empirical formula of isoprene is the same as its molecular formula.

Molecular formula \qquad

Structure

Question 3 continues on the next page

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{2}$ The insides of some golf balls are made from a mixture of three other polymers. |
| :--- | :--- | :--- | The repeating unit for one of these polymers is shown.

Draw the skeletal formula of the monomer used to make this polymer.
Give the IUPAC name of the monomer.

Skeletal formula of monomer

IUPAC name

| $\mathbf{0}$ | $\mathbf{3}$ | $\mathbf{3}$ A second polymer in the mixture has a repeating unit with the structure shown. |
| :--- | :--- | :--- | :--- |

The third polymer in the mixture is a stereoisomer of this polymer.
Draw the structure of the repeating unit of the third polymer.
Give a reason why this type of stereoisomerism arises.

Repeating unit

Reason \qquad
\qquad
\qquad

0	3	4
4	$G o l f ~ b a l l s ~ r e c o v e r e d ~ f r o m ~ l a k e s ~ a n d ~ p o n d s ~ c a n ~ b e ~ u s e d ~ a g a i n ~ e v e n ~ a f t e r ~ b e i n g ~ i n ~$	

Explain why these golf balls do not biodegrade.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$	Substances \mathbf{P} and \mathbf{Q} react in solution at a constant temperature.

The initial rate of reaction was studied in three experiments by measuring the change in concentration of \mathbf{P} over the first five seconds of the reaction. The data obtained are shown in Table 1.

Table 1

Experiment	Time after mixing $/ \mathbf{s}$	Concentration $/ \mathrm{mol} \mathrm{dm}^{-3}$	
		\mathbf{Q}	
1	0	1.00×10^{-2}	1.25×10^{-2}
	5.0	0.92×10^{-2}	not measured
2	0	2.00×10^{-2}	1.25×10^{-2}
	5.0	1.84×10^{-2}	not measured
	0	0.50×10^{-2}	2.50×10^{-2}

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$ Complete Table 2 to show the initial rate of reaction of \mathbf{P} in each experiment..$~$

Table 2

Experiment	Initial rate $/ \mathbf{m o l ~ d m}^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}$
1	1.6×10^{-4}
2	
3	

| 0 | $\mathbf{4}$ | .2 Determine the order of reaction with respect to \mathbf{P} and the order of reaction |
| :--- | :--- | :--- | with respect to \mathbf{Q}.

Order with respect to \mathbf{P}
Order with respect to \mathbf{Q}

| 0 | $\mathbf{4}$ | $\mathbf{3}$ | A reaction between substances \mathbf{R} and \mathbf{S} was second order with respect to \mathbf{R} and |
| :--- | :--- | :--- | :--- | :--- | second order with respect to \mathbf{S}.

At a given temperature, the initial rate of reaction was $1.20 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
when the initial concentration of \mathbf{R} was $1.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$ and
the initial concentration of \mathbf{S} was $2.45 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$
Calculate a value for the rate constant, k, for the reaction at this temperature.
Give the units for k
\qquad

| 0 | 5 |
| :--- | :--- | :--- | The rate constant, k, for a reaction varies with temperature as shown by the equation

$$
k=A e^{-E_{\mathrm{a}} / R T}
$$

For this reaction, at $25^{\circ} \mathrm{C}, k=3.46 \times 10^{-8} \mathrm{~s}^{-1}$
The activation energy $E_{\mathrm{a}}=96.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The gas constant $R=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Calculate a value for the Arrhenius constant, A , for this reaction. Give the units for A.
\qquad

| 0 | 6 |
| :--- | :--- | :--- |\quad This question is about isomers.

| 0 | 6 | 1 |
| :--- | :--- | :--- | 2-methylbutan-1-ol and 2-methylbutan-2-ol.

Reagent
\qquad
Observation with 2-methylbutan-1-ol
\qquad
\qquad
Observation with 2-methylbutan-2-ol \qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{2}$ Compounds \mathbf{A} and \mathbf{B} both have the molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$.

A has a singlet, a triplet and a quartet in its ${ }^{1} \mathrm{H}$ NMR spectrum.
B has only two singlets in its ${ }^{1} \mathrm{H}$ NMR spectrum.
Draw a structure for each of \mathbf{A} and \mathbf{B}.
A
B

| $\mathbf{0}$ | $\mathbf{6}$ | .3 Compounds \mathbf{C} and \mathbf{D} both have the molecular formula $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}_{3}$. |
| :--- | :--- | :--- | :--- |

C has two peaks in its ${ }^{13} \mathrm{C}$ NMR spectrum.
D has four peaks in its ${ }^{13} \mathrm{C}$ NMR spectrum.
Draw a structure for each of \mathbf{C} and \mathbf{D}

C

D

$\mathbf{0}$	$\mathbf{6}$.4
$\mathbf{4}$	Compounds \mathbf{E}, \mathbf{F}, and \mathbf{G} are isomers.	

E

F

G

Figure 1 shows the infrared spectra of these isomers, but not necessarily in the same order.

Label each spectrum with the correct letter \mathbf{E}, \mathbf{F} or \mathbf{G} in the box.
Figure 1

$\mathbf{0}$	$\mathbf{7}$	Isomers \mathbf{X} and \mathbf{Y} have the molecular formula $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{1}$

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{2}$ Explain how and why isomers \mathbf{X} and \mathbf{Y} can be distinguished by comparing each of |
| :--- | :--- | :--- | their

- boiling points
- ${ }^{13} \mathrm{C}$ NMR spectra
- infrared spectra.

Use data from Tables A and C in the Data Booklet in your answer.
\qquad

| 0 | $\mathbf{8}$ |
| :--- | :--- | $\mathbf{1}$ Name the mechanism of the reaction in Step 1.

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{2}$ Complete the equation for the reaction in Step $\mathbf{2}$.

Traditionally, paracetamol has been made industrially in a three-step synthesis from phenol.

\qquad

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{3}$
In theory, either ethanoyl chloride or ethanoic anhydride could be used in Step $\mathbf{3}$.			

Complete the mechanism for the reaction of 4-aminophenol with ethanoyl chloride. RNH_{2} is used to represent 4-aminophenol in this mechanism.

| 0 | 8 | 4 | In practice, ethanoic anhydride is used in the industrial synthesis rather than |
| :--- | :--- | :--- | :--- | ethanoyl chloride.

Give one reason why ethanoyl chloride is not used in the industrial synthesis.
\qquad
\qquad

Question 8 continues on the next page

Draw the structure of one of these other aromatic products.

$\mathbf{0}$	$\mathbf{8} .6$	6
6		

In the first step, phenol is oxidised to hydroquinone.

In the second step, hydroquinone reacts with ammonium ethanoate to form paracetamol.

Complete the equation for this second step.

| 0 | 8. | 7 |
| :--- | :--- | :--- | Calculate the mass, in kg , of hydroquinone $\left(M_{\mathrm{r}}=110.0\right)$ needed to produce 250 kg of paracetamol.

Turn over for the next question

$\mathbf{0}$	$\mathbf{9} \quad$ This question is about thin-layer chromatography (TLC).

- A protein was hydrolysed to form a mixture of amino acids.
- A spot of this mixture was added to a TLC plate and the plate placed vertically in a small volume of solvent 1 .
- When the solvent front reached nearly to the top of the plate, the plate was removed and allowed to dry.
- The plate was turned anticlockwise through 90° and placed vertically in a small volume of solvent 2.
- When the solvent front reached nearly to the top of the plate, the plate was again removed and allowed to dry.
- Figure 2 shows the final TLC plate.

Figure 2

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{1}$ Suggest a suitable reagent for the hydrolysis of a protein.

\qquad
\qquad

$\mathbf{0}$	$\mathbf{9}$.2
$\mathbf{2}$	Suggest how the positions of the amino acids on the TLC plate were located.	

\qquad
\qquad

0	$\mathbf{9}$.	3

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{4}$ Suggest why it was necessary to use two different solvents. |
| :--- | :--- | :--- | :--- |

\qquad

| $\mathbf{1}$ | $\mathbf{0}$ Some compounds with different molecular formulas have the same relative molecular |
| :--- | :--- | :--- | mass to the nearest whole number.

$\begin{array}{lll}1 & 0 & 1\end{array}$ A dicarboxylic acid has a relative molecular mass of 118 , to the nearest whole number.

Deduce the molecular formula of the acid.

Molecular formula

| 1 | 0 | 2 |
| :--- | :--- | :--- | A student dissolved some of the dicarboxylic acid from Question 10.1 in water and made up the solution to $250 \mathrm{~cm}^{3}$ in a volumetric flask.

In a titration, a $25.0 \mathrm{~cm}^{3}$ sample of the acid solution needed $21.60 \mathrm{~cm}^{3}$ of $0.109 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution for neutralisation.

Calculate the mass, in g , of the dicarboxylic acid used.
Give your answer to the appropriate number of significant figures.

| $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{3}$ Compounds with molecular formula $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}$ also have a relative molecular mass of |
| :--- | :--- | :--- | :--- | 118 to the nearest whole number. These include the diol shown.

Deduce the number of peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum of this diol.
\qquad

1	0	4
Draw the structure of a different diol also with molecular formula $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}$ that has a		

| 1 | $\mathbf{0}$ | $\mathbf{5}$ The dicarboxylic acid in question $\mathbf{1 0 . 1}$ and the isomers of $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}$ in Questions |
| :--- | :--- | :--- | 10.3 and 10.4 all have a relative molecular mass of 118

State why the dicarboxylic acid can be distinguished from the two diols by high resolution mass spectrometry using electrospray ionisation.
\qquad
\qquad
\qquad

1	$\mathbf{1}$	This question is about esters including biodiesel.

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
An ester is formed by the reaction of an acid anhydride with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$		

Complete the equation. In your answer show clearly the structure of the ester. Give the IUPAC name of the ester.

Equation

Name of ester
$\begin{array}{llll}\mathbf{1} & \mathbf{1} & \mathbf{2} \text { In a reaction to form biodiesel, one mole of a vegetable oil reacts with an excess of }\end{array}$ methanol to form two moles of an ester with molecular formula $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2}$ and one mole of an ester with molecular formula $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2}$

Draw the structure of the vegetable oil showing clearly the ester links.
You should represent the hydrocarbon chains in the form $\mathrm{C}_{x} \mathrm{H}_{y}$ where x and y are the actual numbers of carbon and hydrogen atoms.

| $\mathbf{1}$ | $\mathbf{1}$ | .3 |
| :--- | :--- | :--- | The compound $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2}$ is the methyl ester of Z, Z-octadeca-9,12-dienoic acid. Part of the structure of the acid is shown.

Complete the skeletal formula to show the next part of the hydrocarbon chain to carbon atom number 14.
In your answer, show the Z stereochemistry around both $\mathrm{C}=\mathrm{C}$ double bonds.

$\mathbf{1}$	$\mathbf{1}$.	$\mathbf{4}$ Give an equation for the complete combustion of the ester $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{2}$

| $\mathbf{1}$ | $\mathbf{1}$ | .5 | Combustion of biodiesel produces greenhouse gases such as carbon dioxide that |
| :--- | :--- | :--- | :--- | cause global warming.

Part of the infrared spectrum of carbon dioxide is shown in Figure 3.
Figure 3

State how the infrared spectrum of carbon dioxide in Figure 3 is not what you might predict from the data provided in Table A in the Data Booklet.

Infrared spectrum of carbon dioxide

| $\mathbf{1}$ | $\mathbf{2}$ Figure 4 shows two complementary strands in part of a DNA double helix structure. |
| :--- | :--- | :--- |

Figure 4

1	2	1
1		

Use dashed lines to show the hydrogen bonds.
You do not need to show lone pairs of electrons or partial charges.

| $\mathbf{1}$ | $\mathbf{2}$. | $\mathbf{2}$ Draw a ring around each of the component parts that make up the cytosine nucleotide |
| :--- | :--- | :--- | :--- | in the section of DNA shown in Figure 4.

| $\mathbf{1}$ | $\mathbf{2}$. | $\mathbf{3}$ State the meaning of the term complementary when it is used to refer to |
| :--- | :--- | :--- | DNA strands.

\qquad
\qquad

1	3	Aqueous NaBH_{4} reduces aldehydes but does not reduce alkenes.

| 1 | $\mathbf{3}$. | $\mathbf{1}$ Show the first step of the mechanism of the reaction between NaBH_{4} and |
| :--- | :--- | :--- | 2-methylbutanal.

You should include two curly arrows.
Explain why NaBH_{4} reduces 2-methylbutanal but has no reaction with 2-methylbut-1-ene.

First step of mechanism

Explanation \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 1 | $\mathbf{3}$. | $\mathbf{2}$ A student attempted to reduce a sample of 2-methylbutanal but added |
| :--- | :--- | :--- | insufficient NaBH_{4}

The student confirmed that the reduction was incomplete by using a chemical test.

Give the reagent and observation for the chemical test.

Reagent
\qquad
Observation \qquad
\qquad

END OF QUESTIONS

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

