Pearson Edexcel

Mark Scheme Results)

Pearson Edexcel Advanced Level
In Chemistry (9CH0) Paper 01 Advanced
Inorganic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 9CHO_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to: - write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
$\mathbf{1 (\mathbf { a })}$	The only correct answer is A	(1)
	\boldsymbol{B} is not correct because oxygen atoms do not have this number of protons	
C is not correct because oxygen atoms do not have this number of protons		
\boldsymbol{D} is not correct because oxygen atoms do not have this number of protons		

Question Number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is \mathbf{D} \boldsymbol{A} is not correct because there are no peaks for bromine molecules	(1)
	B is not correct because the peak for the ${ }^{79} \mathrm{Br}^{81} \mathrm{Br}^{+}$molecular ion is missing C is not correct because the peak for the ${ }^{79} \mathrm{Br}^{-81} \mathrm{Br}^{+}$molecular ion is not twice the height of the other molecular ion peaks	

Question Number	Answer	Mark
1(c)	The only correct answer is C A is not correct because this is only the number of electrons in the $3 p$ orbitals of the chlorine atom B is not correct because this is only the number of electrons in the 3p orbitals of the chloride ion \boldsymbol{D} is not correct because this is the total number of electrons in the chloride ion, not just those in the p orbitals	(1)

Question Number	Answer	Mark
$\mathbf{1 (d)}$	The only correct answer is A	(1)
	\boldsymbol{B} is not correct because oxygen has more protons to exert an attractive force to reduce the ionic radius	
C is not correct because sodium has more protons to exert an attractive force to reduce the ionic radius		
	\boldsymbol{D} is not correct because aluminium has more protons to exert an attractive force to reduce the ionic radius	

| Question
 Number | Answer | Additional Guidance |
| :--- | :--- | :--- | :--- |
| 2(a)(i) | \bullet equation | Example of equation
 $\mathrm{Cl}_{2}+2 \mathrm{KBr} \rightarrow \mathrm{Br}_{2}+2 \mathrm{KCl}$
 Accept ionic equation
 $\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$
 Allow multiples
 Ignore state symbols even if incorrect |

Question Number	Answer	Additional Guidance	Mark
2(a)(ii)	An answer that makes reference to the following points: - (M1) the precipitate is a mixture of silver chloride and bromide or not all of the bromide ions were oxidised - (M2) silver chloride/AgCl dissolves in dilute ammonia - (M3) silver bromide/AgBr does not dissolve in dilute ammonia (1)	Allow Some bromide ions are still present/bromide ions were in excess/both chloride and bromide ions are present Do not award references to Cl^{-}dissolving Silver bromide only dissolves in concentrated ammonia	(3)

Question Number	Answer	Additional Guidance	Mark
2(a)(iii)	An answer that makes reference to the following point: - iodine is a weaker oxidising agent than chlorine or iodine cannot oxidise bromide ions or iodine is a stronger reducing agent	Accept reverse arguments	Ignore Just references to reactivity/displacement e.g. iodine is less reactive/cannot displace

Question Number	Answer	Additional Guidance	Mark
2(b)(i)	• balanced equation	Example of equation $3 \mathrm{Cl}_{2}+6 \mathrm{OH}^{-} \rightarrow 5 \mathrm{Cl}^{-}+\mathrm{ClO}_{3}{ }^{-}+3 \mathrm{H}_{2} \mathrm{O}$ Allow multiples Ignore state symbols even if incorrect	(1)

Question Number	Answer	Additional Guidance	Mark
$\begin{aligned} & \hline \text { 2(b)(ii) } \\ & \text { Clip with } \\ & \text { 2(b)(i) } \end{aligned}$	An explanation that makes reference to the following points: - oxidation number for chlorine changes from 0 to -1 so it is reduced (1) - oxidation number for chlorine changes from 0 to +5 so it is oxidised	Ignore general definitions of disproportionation Accept oxidation numbers and their changes shown with equation Allow 1 out of 2 marks for three correct oxidation numbers of the chlorine	(2)

| Question
 Number | Answer |
| :---: | :--- | :---: |
| 3(a)(i) | The only correct answer is D |
| | \boldsymbol{A} is not correct because the measurement uncertainty is doubled as there are two burette readings |
| | B is not correct because this gives the largest measurement uncertainty |
| | \boldsymbol{C} is not correct because the measurement uncertainty is doubled as the pipette is used twice |

Question Number	Answer	Additional Guidance	Mark
3(a)(ii)	- calculation of Q - calculation of enthalpy change - answer to nearest whole number and with negative sign	Example of calculation $\begin{aligned} & \mathrm{Q}=(100 \times 4.18 \times 6.5=) \\ & =2717(\mathrm{~J}) / 2.717 \mathrm{~kJ} \\ & \Delta \mathrm{H}=2.717 \div 0.05=(-) 54.340 \\ & =-54\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ Allow TE at each stage Correct answer with no working scores (3)	(3)

Question Number	Answer	Mark
3(b)(i)	The only correct answer is B	(1)
	\boldsymbol{A} is not correct because there is no extrapolation to the largest temperature increase carried out	
C is not correct because the extrapolation is at the wrong time		
\boldsymbol{D} is not correct because the extrapolation extends beyond the time of addition of alkali		

Question Number	Answer	Additional Guidance	Mark
3(b)(ii)	An explanation that makes reference to	(2)	
	\bullet ethanoic acid is a weak(er) acid / only partially ionised/dissociated (1)	Allow hydrochloric acid is a strong(er) acid/fully ionised	Do not award 'more NaOH will react so more energy given off'

Question Number	Answer	Additional Guidance	Mark
4(a)(i)	An answer that makes reference to the following point: • (Identity of gas is) oxygen $/ \mathrm{O}_{2}$ and (test result is that the splint) relights	Do not award just 'O'	(1)

Question Number	Answer	Additional Guidance	Mark		
4(a)(ii)	An answer that makes reference to the following point: - (Identity of gas is) nitrogen dioxide and (appearance is) brown (gas/fumes)	If name and formula given then both must be correct Allow NO_{2}	(1)		
Do not award NO^{2} or $\mathrm{N}_{2} \mathrm{O}_{4}$					
Do not award if liquid referred to					
Do not award if two gases are given					
unless one of the gases stated is					
colourless oxygen				\quad	Ignore shades of colour
:---					

Question Number	Answer	Additional Guidance	Mark
4(a)(iii)	- equation	Example of equation	(1)
		$2 \mathrm{NaNO}_{3} \rightarrow 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2}$ Accept multiples Ignore state symbols even if incorrect	

Question Number	Answer	Additional Guidance	Mark
4(a)(iv)	An description that makes reference to following points: - use of a delivery tube to bubble gas into limewater - compare the time taken for the limewater to go cloudy (1)	Allow annotated diagrams to illustrate the marking points Example of a diagram that could be given credit Do not award if the apparatus setting would not be feasible such as - missing cork/bung or gaps around delivery tube - horizontal tube with limewater in - bung in the test tube with limewater Allow TE from an incorrect/unsuitable method Allow Any length of time, e.g. 10 minutes	(2)

Question Number	Answer	Additional Guidance	Mark
4(b)	An explanation that makes reference to - the magnesium ion/cation is smaller (than the barium ion/cation) (1) - which polarises the (large) carbonate (ion)/anion - and weakens the carbon-oxygen bond $(\mathrm{C}-\mathrm{O} / \mathrm{C}=\mathrm{O})$ bonds (1)	Accept reverse arguments Penalise omission of ion once only Allow magnesium ion/cation has a higher charge density Do not award reference to just atom Accept 'which distorts the carbonate electron cloud' Do not award if molecules of carbonate are referred to Allow 'weakens the bonds in the carbonate ion' Allow 'less energy needed to break the C-O bond' Do not award if the bonds referred to are the ionic bonds between the metal ion and the carbonate ion	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{5 (a) (\mathbf { i })}$	An answer that makes reference to the following point:		(1)
	• the two negative ions repel each other	Reference to both charge and repulsion needed	

Question Number	Answer	Additional Guidance	Mark
5(a)(ii)	An explanation that makes reference to the following points: - equation with oxidation of iron(II) ions - equation with reduction of iron(III) ions - (catalysis is possible because) variable oxidation state/iron has more than one oxidation state/number or both steps now involve oppositely charged ions	Example of equations $\begin{aligned} & 2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \rightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}^{2-} \\ & 2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2} \end{aligned}$ Allow multiples Ignore state symbols even if incorrect Allow one mark if the two correct equation are given in the wrong order Allow reference to iron being oxidised and reduced Allow reference to the iron ions being positive and so not repelled	(3)

Question Number	Answer	Additional Guidance	Mark
5(b)	- equation with oxidation of cobalt(II) ions - equation with reduction of cobalt(III) ions	Example of equations $\begin{aligned} & 2 \mathrm{Co}^{2+}+1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{Co}^{3+}+\mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{Co}^{3+}+\mathrm{SO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Co}^{2+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{H}^{+} \end{aligned}$ Allow multiples Ignore state symbols even if incorrect	(2)

Question Number	Answer	Mark
$\mathbf{5 (c)}$	The only correct answer is \mathbf{C}	(1)
	\boldsymbol{A} is not correct because only Mn^{2+} is an autocatalyst for this reaction \boldsymbol{B} is not correct because only Mn^{2+} is an autocatalyst for this reaction \mathbf{D} is not correct because only Mn^{2+} is an autocatalyst for this reaction	

Question Number	Answer	Additional Guidance	Mark
5(d)	Tungsten (because) adsorption is too strong and so desorption would be too slow	Ignore references to oxidation or reactivity series or cost Do not award 'absorption'	(1)

Question Number	Answer	Additional Guidance	Mark
6(a)	An answer that makes reference to the following points: - (M1) (a lower boiling temperature is expected) because water has fewer electrons than hydrogen sulfide - (M2) water has weaker/less London forces - (M3) (a higher boiling temperature occurs because) water has hydrogen bonding - (M4) hydrogen bonding is stronger than London forces and requires more energy to break (and results in a higher boiling temperature)	Accept water has 10 electrons but hydrogen sulfide has 18 electrons (per molecule) Ignore reference to $\mathrm{Mr} /$ size of atom Allow van der Waals'/dispersion forces/ instantaneous dipole-induced dipole Accept reverse arguments Ignore references to permanent dipole-dipole forces	(4)

Question Number	Answer	Additional Guidance	Mark
6(b)	An explanation that makes reference to the following points: - (M1) oxygen is more electronegative than hydrogen and carbon (1) - (M2) which results in a polar bond with oxygen δ^{-}so carbon and hydrogen $\delta+$ - (M3) carbon dioxide is a symmetrical/linear molecule and so the dipole moments/vectors cancel - (M4) the lone pairs of electrons of oxygen/ the V-shape of the water molecule mean that the dipole moments/ vectors do not cancel	Accept supporting diagrams which illustrate the following: Accept electronegativity values stated Allow oxygen has a greater force of attraction for the bonded electron pairs than hydrogen or carbon Penalise the failure to refer to carbon and hydrogen once only Allow 'symmetrical so dipoles/ bonds cancel' Allow angular/bent for V-shape Penalise reference to just 'charges' once only in M3 and M4 if dipoles not stated or shown in the answer	(4)

Question Number	Answer	Additional Guidance	Mark
6(c)	Two diagrams - oxonium ion - hydroxide ion	Examples of suitable diagrams Ignore inner 'shell' of two electrons Ignore missing brackets Ignore covalent circles Penalise all dots or all crosses or use of other symbols for electrons once only Penalise omission of charges once only	(2)

Question Number	Answer	Additional Guidance	Mark
6(d)(i)	- square root of K_{w} at 310 K to get $\left[\mathrm{H}^{+}\right]$ - calculation of pH to 2 decimal places	Example of calculation: $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\left(\sqrt{ } 2.40 \times 10^{-14}\right)=1.549 . . \times 10^{-7}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & \mathrm{pH}=\left(-\log 1.549 . . \times 10^{-7}\right) \\ & =(6.809894379)=6.81 \end{aligned}$ Correct answer with no working scores (2) Allow TE from incorrect $\left[\mathrm{H}^{+}\right]$as long as answer is in the pH range 6.00-7.00 inclusive	(2)

Question Number	Answer	Additional Guidance	Mark
6(d)(ii)	An answer that makes reference to the following points: - (M1) neutral (1) - (M2) because $\left[\mathrm{H}^{+}(\mathrm{aq})\right]=\left[\mathrm{H}^{-}(\mathrm{aq})\right]$ /equal amounts of H^{+}and OH^{-}ions	Acidic or alkaline scores (0) Allow both $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$have increased equally (from 298 K to 310 K) M2 dependent on M1	(2)

Question Number	Answer	Additional Guidance	Mark
6(d)(iii)	An answer that makes reference to the following point: ensitive / + sign because Kw increases as the temperature increases	Allow 'positive because' bond breaking requires energy or equilibrium shifts to the right or there is greater/more ionisation/dissociation lgnore 'endothermic'	(1)

Question Number	Ans	swer	Additional Guidance	Mark
*7	This question assesses the stude and logically structured answer sustained reasoning. Marks are awarded for indicative answer is structured and shows The following table shows how the for indicative content. The following table shows how the for structure and lines of reason	dent's ability to show a coherent with linkages and fully ve content and for how the lines of reasoning. the marks should be awarded the marks should be awarded ning Number of marks awarded for structure of answer and sustained lines of reasoning 2	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and zero marks for linkages). If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s). More than one indicative marking point may be made within the same comment or explanation	(6)

| Question
 Number | Answer | Additional Guidance | Mark |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{8 (a) (i)}$ | An answer that makes reference to the following points: | Allow corrections to be made on the
 diagram | (2) |
| | - identification and correction of the first error (1) | Error 1-arrow for enthalpy change of
 formation should go down/be reversed | |
| - identification and correction of the second error (1) | Error 2 - the word 'half' should be deleted
 from the enthalpy change of atomisation of
 hydrogen | | |

Question Number	Answer	Additional Guidance	Mark
8(a)(ii)	- calculation of first electron affinity of hydrogen	Example of calculation st $\mathrm{EA}=-(218+496+107)-56+804$ $=-73\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	(1)
		Allow a TE $1^{\text {st }} \mathrm{EA}=+39(\mathrm{~kJ} \mathrm{~mol}$ reversed direction is not identified	

Question Number	Answer	Additional Guidance	Mark
Penalise incorrect or missing units in (b)(i) and (b)(ii) once only			
8(b)(i)	- calculation of ΔG (1) - ΔG is negative/ <0 and so reaction is feasible (1)	Example of calculation $\begin{aligned} \Delta G & =-56-(298 \times \underline{-76.5}) \\ & =-33.203\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$ or $\begin{aligned} \Delta G & =-56000-(298 \times-76.5) \\ & =-33203\left(\mathrm{~mol}^{-1}\right) \end{aligned}$ Ignore SF except 1 Allow ≤ 0 and so reaction is feasible Standalone mark Allow TE on own ΔG calculated value	(2)

Question Number	Answer	Additional Guidance	Mark
8(b)(ii)	- calculation of T	Example of calculation $\begin{aligned} & \Delta G=0, \text { so } \Delta H=T \Delta S_{\text {(system) }} \text { or } T=\Delta H / \Delta S_{\text {(system) }} \\ & T=56 / 0.0765=732 \mathrm{~K} \end{aligned}$ or $\mathrm{T}=56000 / 76.5=732 \mathrm{~K}$ or $\mathrm{T}=459^{\circ} \mathrm{C}$ Ignore SF except 1 SF Do not award -732K TE on incorrect values penalised already in (b)(i)	(1)

Question Number	Answer	Additional Guidance	Mark
8(c)	• reduction half-equation	Example of half equation $1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{OH}^{-}$	(1)
		Allow multiples	
	Ignore state symbols even if incorrect		

Question Number	Answer	Mark		
8(d)	The only correct answer is B (-804, -711, -2718)			
	\boldsymbol{A} is not correct because the lattice energy of magnesium hydride is not exothermic enough			
C is not correct because the lattice energy of potassium hydride should be less exothermic than sodium hydride				
and also that the lattice energy of magnesium hydride is not exothermic enough				
	D is not correct because the lattice energy of potassium hydride should be less exothermic than sodium hydride		\quad	(1)
:---				

Question Number	Answer	Mark
The only correct answer is D (resists changes in pH if small quantities of acid or base are added)	(1)	
$\mathbf{9 (a)}$	A is not correct because buffer solutions can be alkaline or acidic B is not correct because buffers do not always contain equal numbers of moles of the acid and its conjugate base C is not correct because a buffer does not prevent any change in pH	

Question Number	Answer	Additional Guidance	Mark
9(b)	- (M1) calculation of [$\left.\mathrm{H}^{+}\right]$ - (M2) rearrangement of K_{a} and calculation of ethanoate concentration (1) - (M3) calculation of the number of moles of ethanoate in the buffer volume - (M4) calculation of the mass of sodium ethanoate in the buffer volume - (M5) answer to 2/3 SF	$\begin{align*} & \frac{\text { Example of calculation }}{\left[\mathrm{H}^{+}\right]=10^{-3.9}=1.2589 . . \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \\ & {\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=\frac{\left(1.74 \times 10^{-5} \times 0.800\right)}{1.2589 . . \times 10^{-4}}=} \tag{1}\\ & =0.11057 . .(\mathrm{mol} \mathrm{dm} \\ & \mathrm{n}) \\ & \mathrm{n}=(0.11057 . . \times 0.05=) 5.5285 . . \times 10^{-3}(\mathrm{~mol}) \\ & \mathrm{m}=\left(5.5285 . . \times 10^{-3} \times 82=\right) 0.453339 . . \\ & \mathrm{m}=0.45 / 0.453(\mathrm{~g}) \end{align*}$ Award this mark only if there has been some attempt at calculation using an M_{r} TE at each stage If Henderson-Hasselbalch equation used (M1) for calculation of $\mathrm{p} K_{\mathrm{a}}=4.759$ (M2) for rearrangement and calculation of ethanoate concentration Remaining marking points as above	(5)

Question Number	Answer	Additional Guidance	Mark
9(c)	An answer that makes reference to the following points: - carbon dioxide dissolved in the blood forms carbonic acid (and so this concentration increases) - the equilibrium will shift to the right and produces more H^{+}/acid ions - the (high) concentration of hydrogencarbonate ions suppress the ionisation of carbonic acid (to help to control pH) or the (large) reservoir/excess of hydrogencarbonate ions combine with the H^{+}ions (to help to control blood pH)	Can be shown in an equation Do not award ' CO_{2} reacts with H^{+} to form carbonic acid' Allow Carbonic acid (partially) dissociates to produce H^{+} Do not award ' CO_{2} reacts with H^{+} so equilibrium shifts to the right to produce more $\mathrm{H}^{+\prime}$ Ignore general comments about the effects of adding acid and/or alkali to a buffer which do not relate to carbon dioxide	(3)

Question Number	Answer	Additional Guidance	Mark
9(d)(i)	- general shape of weak acid-strong base curve - curve starts at pH of 3.0 and ends at pH of 12-13 (1) - vertical part of the curve at $40 \mathrm{~cm}^{3}$ - labelling of area indicating buffer action	Exemplar graph Ignore missing initial rise in pH Vertical part must cover 3-5 pH units between 6-11 The curve should reach $\mathrm{pH} \sim 12-13$ by $10 \mathrm{~cm}^{3}$ after vertical section The curve must start at zero and continue to $100 \mathrm{~cm}^{3}$ Allow buffering area to be labelled anywhere between ~ 5 and $35 \mathrm{~cm}^{3}$ inclusive	(4)

Question Number	Answer	Additional Guidance	Mark
9(d)(ii)	An answer that makes reference to - determine the pH at the point when half of the acid is neutralised - $K_{\mathrm{a}}=10^{-\mathrm{pH}} / K_{\mathrm{a}}=10^{-\mathrm{p} K_{a}}$	Standalone marks Allow 'pH at half-equivalence point' Allow 'pH at half neutralisation point' Accept description in words such as inverse log of minus pH or value is $\mathrm{p} K_{a}$ and so inverse log of minus value gives $K_{\text {a }}$ Allow $\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}$ Ignore any calculation	(2)

Question Number	Answer	Additional Guidance	Mark
10(a)(ii)	- calculation of the number of molecules	Example of calculation $\begin{aligned} & \mathrm{N}=\left(\mathrm{n} \times \mathrm{L}=0.0160 \times 6.02 \times 10^{23}\right) \\ & =9.632 \times 10^{21} \end{aligned}$ Ignore SF except 1SF Do not award if any units are given	(1)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{1 0 (a) (i i i)}$	An answer that makes reference to the following points: - to ensure that K_{p} stays the same/ quotient stays the same or only temperature changes the value of K_{p} (1) the number of (sulfur dioxide) molecules decreases Either because the equilibrium shifts to the right or because one of the denominators (oxygen) has increased so the other denominator (sulfur dioxide) (1) has to decrease	Allow concentration changes have no effect on the value of K_{p}	Allow 'moles' for molecules

Question Number	Answer	Additional Guidance	Mark
10(b)	An explanation that makes reference to the following points: - equilibrium position shifts to the left - (because) the hydroxide ions combine with/neutralise the H^{+} ions to remove them from the equilibrium	'Equilibrium moves to the right' scores (0) Allow Hydroxide ions react with H^{+}ions to make water/ hydroxide ions react with H^{+}ions to reduce their number/concentration Ignore reference to 'more products formed'	(2)

Question Number	Answer	Mark
10(c)	The only correct answer is D $K_{\mathrm{C}}=\left[\mathrm{H}_{2} \underline{\mathrm{O}}\right]^{4}$ $\left[\mathrm{H}_{2}\right]^{4}$ A is not correct because the solids should not be included in the expression and the powers of the remaining substituents have been omitted B is not correct because the solids should not be included in the expression \mathbf{C} is not correct because the powers of the substituents have been omitted	(1)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

