

Write your name here Surname		Other names	
Edexcel GCE	Centre Number	Cand	idate Number
Chemistr	\ /		
Advanced Subsidia Unit 1: The Core Pr	ary	Chemistry	
Advanced Subsidia	inciples of C	Paper F	Reference H01/01

Instructions

- Use black ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

xcel ***

advancing learning, changing lives

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ☒. If you change your mind, put a line through the box ☒ and then mark your new answer with a cross ☒.

In the following outline of the Periodic Table, the letters A to D are **not** the symbols of the elements.

Select from A to D the element which

(a) is a non-metal	with a high melting	temperature and	l boiling temperature.	
				(1)

- lacksquare
- and B
- □ C
 □ D
- (b) is in the d block of the Periodic Table.
- (1)
- □ B□ C
- (c) has a very stable electronic structure
- (c) has a very stable electronic structure.
- $\square \mathbf{A}$
- □ A
 □ B
- □ C
 □ D

	(d) is a	a metal with a high melting temperature and boiling temperature.
	☐ A	(1)
	В	
	\square C	
	D	
		(Total for Question 1 = 4 marks)
2		ements in Group 1 of the Periodic Table have very similar chemical properties. because
	\square A	they have the same number of outer electrons.
	В	they have the same number of filled shells of electrons.
	a C	their outer electrons are in the s sub-shell.
	ĭ D	their outer electrons have very similar shielding.
		(Total for Question 2 = 1 mark)
3		propean Union has set a limit (with effect from January 2010) of 3.13 ppm for portion of the toxic gas carbon monoxide in the air that we breathe. This is lent to
	A A	3.13%
	В	0.0313%
	\square C	0.000313%
	□ D	0.00000313%
	Shelmanan wakiyen dhesso yan samsoo ya sa	(Total for Question 3 = 1 mark)
4		vers in the UK, the legal limit of the concentration of ethanol (molar mass ol ⁻¹) in the blood is 80 mg per 100 cm ³ . This is equivalent to a concentration of
		17.4 mol dm ⁻³
	\square B	1.74 mol dm ⁻³
	\Box C	$0.0174 \text{ mol dm}^{-3}$
	D	$0.00174 \text{ mol dm}^{-3}$
		(Total for Question 4 = 1 mark)
٠		

5 An important reaction which occurs in the catalytic converter of a car is

$$2CO(g) + 2NO(g) \rightarrow 2CO_2(g) + N_2(g)$$

In this reaction, when 500 cm³ of CO reacts with 500 cm³ of NO at 650 °C (the operating temperature of the catalyst) and at 1 atm, the **total** volume of gases produced at the same temperature and pressure is

- \square A 500 cm³
- \blacksquare **B** 750 cm³
- **C** 1000 cm³
- **D** impossible to calculate without knowing the molar volume of gases under these conditions.

(Total for Question 5 = 1 mark)

- 6 When a solution of barium chloride is added to sulfuric acid, a white precipitate is formed. The ionic equation (including state symbols) for this reaction is
 - \square A $H^+(aq) + Cl^-(aq) \rightarrow HCl(s)$
 - \square **B** Ba⁺(aq) + SO₄⁻(aq) \rightarrow BaSO₄(s)
 - \square C Ba²⁺(aq) + 2SO₄⁻(aq) \rightarrow Ba(SO₄)₂(s)
 - \square **D** Ba²⁺(aq) + SO₄²⁻(aq) \rightarrow BaSO₄(s)

(Total for Question 6 = 1 mark)

- 7 The enthalpy change for the reaction between hydrochloric acid and sodium hydroxide is -56 kJ mol⁻¹. Therefore
 - \square A the reaction is exothermic and the temperature rises.
 - \square **B** the reaction is exothermic and the temperature falls.
 - **C** the reaction is endothermic and the temperature rises.
 - \square **D** the reaction is endothermic and the temperature falls.

(Total for Question 7 = 1 mark)

8 The standard enthalpy changes of formation of some sulfur species are:

Species	$\Delta H_{ m f}^{\ominus}$ / kJ mol $^{-1}$
S ₈ (s)	0
$S_8(g)$	+103
S(g)	+279

The enthalpy of atomization of sulfur is (in kJ mol⁻¹)

- **A** 103 ÷ 8
- **B** $279 \div 8$
- **☒ C** 279
- **D** $(103 \div 8) + 279$

(Total for Question 8 = 1 mark)

9 For which of the following reactions is the enthalpy change equal to the bond enthalpy of H–I?

- ${\color{red} \begin{tabular}{l} \be$
- **B** HI(g) → $\frac{1}{2}$ H₂(g) + $\frac{1}{2}$ I₂(g)
- \square C $HI(g) \rightarrow H(g) + I(g)$
- \square **D** $HI(g) \rightarrow H^+(g) + I^-(g)$

(Total for Question 9 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

10 The equation for the complete combustion of pentane is

$$C_5H_{12}(g) + 8O_2(g) \rightarrow 5CO_2(g) + 6H_2O(l)$$
 $\Delta H_c^{\ominus} = -3509 \text{ kJ mol}^{-1}$

The standard enthalpy change of formation of $CO_2(g)$ is -394 kJ mol⁻¹ and that of $H_2O(l)$ is -286 kJ mol⁻¹.

The standard enthalpy change of formation of pentane (in kJ mol⁻¹) is

- \triangle **A** 5(-394) + 6(-286) + (-3509)
- \blacksquare **B** 5(-394) + 6(-286) (-3509)
- \square C -5(-394) 6(-286) + (-3509)
- **D** -5(-394) 6(-286) (-3509)

(Total for Question 10 = 1 mark)

- 11 All alkenes have
 - 🔀 A the same empirical formula and the same general formula.
 - \boxtimes **B** the same molecular formula and the same general formula.
 - **C** the same molecular formula and the same empirical formula.
 - **D** the same empirical formula and the same structural formula.

(Total for Question 11 = 1 mark)

- 12 Covalent bonding results from the strong electrostatic attractions between
 - **A** instantaneous dipoles.
 - **B** electron clouds.
 - C electrons in the bonding pair.
 - **D** bonding pairs of electrons and nuclei.

(Total for Question 12 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

13 This q	uestion concerns the reaction of hydrogen bromide with propene.	
(a) Thi	is reaction requires	
A	normal laboratory conditions.	(1)
⊠ B	the presence of UV light.	
□ C	the presence of a suitable catalyst.	
\square D	heating under reflux.	
(b) The	e reaction is best described as	(1)
$\mathbf{Z} \mathbf{A}$	nucleophilic substitution.	
B	electrophilic substitution.	Will be seen and the seen and t
図 C	nucleophilic addition.	
\square D	electrophilic addition.	Rodulan W.C. Z.
(c) The	e major product of the reaction will be	(1)
≅ A	1-bromopropane	AN MALLAN LES CALON LA CALON L
E B	2-bromopropane	NO APPLICATION OF THE PROPERTY
☑ C	1,2-dibromopropane	ASS HAZ PARA
\boxtimes D	2-bromopropene	THE STATE OF THE S
MANUFACTOR CONTRACTOR	(Total for Question 13 = 3 n	narks)
14 Many o	organic compounds have toxic vapours. For this reason	
A	a naked flame should never be used when carrying out experiments with orga compounds.	nic
ВВ	gloves should usually be worn when carrying out experiments with organic compounds.	
C	a fume cupboard should be used wherever possible when carrying out experiments with organic compounds.	
D	most experiments with organic compounds are banned in schools and colleges	S.
	(Total for Question 14 = 1)	nark)

15 Ethanol (molar mass 46 g mol⁻¹) is manufactured by the hydration of ethene (molar mass 28 g mol⁻¹):

$$C_2H_4 + H_2O \rightarrow C_2H_5OH$$

In a typical process 28 tonnes of ethene produces 43.7 tonnes of ethanol. The percentage yield of ethanol in this process is

- □ **A** 64%
- ☑ **B** 95%
- **□ C** 100%
- **D** 156%

(Total for Question 15 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

BLANK PAGE

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

16 The first ionization energy of each of the elements from neon to argon is shown on the graph below. The first ionization energy of potassium has been omitted.

(a) Define the term first ionization energy.

(3)

energy to increase.	(3)
	•••••••
e) Explain why the first ionization energy decreases from P to S.	
	(2)
1) Estimate the value of the first ionization energy of potassium, K, and write your	
answer below.	
	(1)
kJ mol ⁻¹	
(Total for Question 16 = 9	marks)

17 0.400 g of magnesium ribbon reacted with exactly 22.2 cm³ of hydrochloric acid of concentration 1.50 mol dm⁻³.

400 cm³ of hydrogen gas was formed, the volume being measured at room temperature and pressure.

In the calculations that follow, use the following molar masses:

$$Mg = 24.0 \text{ g mol}^{-1}$$

 $Cl = 35.5 \text{ g mol}^{-1}$

(a) Calculate the amount (in moles) of magnesium used.

(1)

(b) Calculate the amount (in moles) of hydrochloric acid used.

(1)

(c) Calculate the amount (in moles) of hydrogen produced.

[Molar volume of any gas at room temperature and pressure = $24\ 000\ \text{cm}^3\ \text{mol}^{-1}$]

(1)

(d) Show that the calculated amounts of magnesium, hydrochloric acid and hydrogen are consistent with the following equation for the reaction

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

(1)

(e) Calculate the maximum mass of magnesium chloride that would be formed in this reaction. Give your answer to **three** significant figures.

(3)

(Total for Question 17 = 7 marks)

18	Copper(II) sulfate exists as blue hydrated crystals and white anhydrous crystals.	The
	enthalpy changes of solution for these two substances may be represented by the	
	following simplified equations:	

CuSO₄.5H₂O(s) + aq
$$\rightarrow$$
 CuSO₄(aq) $\Delta H_1 = +11.5 \text{ kJ mol}^{-1}$
blue
CuSO₄(s) + aq \rightarrow CuSO₄(aq) $\Delta H_2 = -66.1 \text{ kJ mol}^{-1}$

$$CuSO_4(s) + aq \rightarrow CuSO_4(aq)$$
 $\Delta H_2 = -66.1 \text{ kJ mol}^{-1}$ white

(a) (i) Fill in the box and add labelled arrows to complete the Hess cycle to enable you to calculate
$$\Delta H_{\rm reaction}$$
.

$$CuSO_4.5H_2O(s) \xrightarrow{\Delta H_{reaction}} CuSO_4(s) + 5H_2O(1)$$

(ii) Calculate a value for the enthalpy change $\Delta H_{\rm reaction}$.

(2)

(3)

(b) Suggest why it is not possible to directly measure the enthalpy change for the conversion of the blue hydrated copper(II) sulfate crystals into the white anhydrous crystals.

(1)

*	(c)(i)	$CuSO_4.5H_2O(s) + aq \rightarrow CuSO_4(aq)$ $\Delta H_1 = +11.5 \text{ kJ mol}^{-1}$	
		Describe briefly the experimental procedure that you would use to obtain the data necessary to calculate ΔH_1 , given a known mass of hydrated copper(II) sulfate crystals, CuSO ₄ .5H ₂ O(s).	
		You should state the apparatus that you would use and any measurements that you would make.	
		You are not required to calculate the amounts of substances or to explain how you would use the data obtained.	
			(4)
	(ii)	The value for the enthalpy change from (c)(i) obtained by experiments in a school laboratory is likely to be significantly different from a data book value.	
		List three possible reasons for this which do not relate to the quality of the apparatus or chemicals used or possible mistakes in carrying out the procedure.	(3)
1	·····		
	··		
2	······		
3			
	*****	(Total for Question 18 = 13 mar	rks)

- 19 This question is about alkanes.
 - (a) The skeletal formulae of two alkanes (A and B) are shown below.

(i) Write the general formula of the alkanes.

(1)

(ii) Compounds A and B are of each other.

(1)

(iii) Draw the displayed formula of compound A.

(1)

(iv) Give the systematic name of compound B.

(1)

(1	b) The the	e largest use for alkanes is as fuels. However, there are problems associated with combustion of alkanes, whether complete or incomplete.	
	(i)	An incomplete combustion of methane, CH ₄ , results in the formation of carbon monoxide and water only.	
		Write the equation for this reaction. State symbols are not required.	(2)
	(ii)	When does incomplete combustion occur?	(1)
	(iii)	State two problems that result from the incomplete combustion of alkane fuels.	(2)
1			
2			
	*(iv)	State and explain the main environmental problem arising from the complete combustion of alkane fuels.	(3)
	•••••	······································	

- (c) The reactions of organic compounds, including alkanes, may be broken down into a series of steps; this is the mechanism for the reaction. The reaction between methane and chlorine may be represented by a mechanism involving three stages **initiation**, **propagation** and **termination**.
 - (i) Reaction mechanisms often involve the use of 'curly arrows'. Explain the meaning of the curly arrows shown below.

(2)

Arrow I

methane and chlorine.

Arrow II

		•	

(ii) Using the curly arrow notation, show the **initiation** step of the reaction between

(2)

(iii) Give the two propagation steps of the reaction between methane and chlorine.

Curly arrows are not required.

(2)

(iv) Suggest why a small amount of UV light can result in the formation of a large amount of product.

(1)

(v) Ethane is a trace product of this reaction. By means of an equation, show how the ethane is formed.

(1)

(d) Scientists never detect molecular hydrogen, H₂, amongst the products of the chlorination of methane.

Use the data below to suggest why this is so.

The frequency of UV light used corresponds to an energy of about 400 kJ mol⁻¹.

Bond	Bond enthalpy/kJ mol ⁻¹
C—H	435
Cl—Cl	243

(2)

(Total for Question 19 = 22 marks)

a) (1)	Describe the structure of a metal.	
/ \ - /		(2)
(ii)	Describe the bonding in a metal.	
, ,		(2)
	·	
a) Evn	lain why the melting temperature of magnesium (650 °C) is much higher than	
	of sodium (98 °C).	
		(3)
		

(c) Explain how metals conduct electricity.	(2)
	(Total for Question 20 = 9 marks)
	TOTAL FOR SECTION B = 60 MARKS
	TOTAL FOR PAPER = 90 MARKS

BLANK PAGE

BLANK PAGE

S	ļ
Ţ	
<u></u>	
$\underline{\Psi}$	
	•
lemen	
Ш	
of	
Ö	
W.	
$\overline{}$	
,,,,	
<u>_</u>	
Table	
U	
dic T	
odic T	
iodic T	
riodic T	
eriodic T	
Periodic	
Periodic	
Periodic	
Periodic	
The Periodic T	
Periodic	

0 (8)

(18) 4.0 He helium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Kr	krypton 36	131.3 X o	xenon 54	[222]	₹ sqou			
	19.0 F fluorine		79.9 Br		126.9 1 I	iodine ×	[210]	6)	Elements with atomic numbers 112-116 have been reported but not fuily authenticated	175 Lu lutetíum 71	[257] Lr lawrencium 103
(16)	16.0 O oxygen 8	32.1 S sulfur c	% Se		127.6 Te	E	[509]	polonium a	16 have ber icated	173 Yb ytterbium	[254] No nobelium la
(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9 As		121.8 Sh	antimony t	209.0	bismuth R	tomic numbers 112-116 hav but not fully authenticated	169 Tm thullum y	[256] Md mendelevium 1
(14)	12.0 C carbon 6	28.1 Si silicon	72.6 Ge	germanium 32		tin 50		lead 82	atomic nun but not fu	167 Er erbium 68	[253] Fm fermium 100
(13)	10.8 boron 5	27.0 Al aluminium 13		gallium 31	114.8 In	indium 49	204.4	11 thallium 81	nents with	165 Ho holmium 67	[254] Es etnsteinium 99
		(12)	65.4 Zn	zinc 30	112.4 Cd	cadmium 48	200.6	mercury 80		163 Dy dysprosium 66	[251] [254] Cf Es catifornium einsteinium 98 99
		(11)	63.5 C u	copper 29	107.9 Ao	silver 47	197.0	gold 79	[272] Rg roentgenium 111	159 Tb terbium 65	[245] BK berkelium 97
		(10)	58.7 X:	nickel 28	106.4 Pd	palladium 46	195.1	platinum 78	[271]	157 Gd gadoliníum 64	(247] Cm cunum 96
		(6)	58.9 Co	cobalt 27	102.9 Rh	rhodfum 45	192.2	iridium 77	[268]	152 Eu europium 63	[243] Am americium 95
1.0 Hydrogen		(8)	55.8 Fe		101.1	5	190.2	OSmium 76	[277] Hs hassium r	150 Sm samarium 62	Pu plutonium 94
		(2)	54.9 M n	manganese 25	[98] T	technetium 43	186.2	rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	[237] Np neptunium 93
mass	mass I bol number	(9)	52.0 5 Cr A	chromium 24	95.9 Mo	molybdenum 42	183.8	w tungsten 74	[266] Sg seaborgium 106	144 [1] Nd F un neodymium prom	238 U uranium 92
Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V	vanadium 23	92.9 Nh	niobiu 41	180.9	tantalum 73	[262] Db dubnium 105	141 Pr praseodymium 59	[231] Pa protectinium 91
	relai at c atomi	(4)	47.9 Ti	titanium 22	91.2 7r	zirconium 40	178.5	hafnium 72	[261] Rf autherfordium 104	740 Ce cerium 58	232 Th thorium 90
		(3)	45.0 Sc	scandium 21	88.9	yttrium 39	138.9	La lanthanum 57	[227] AC* actinium 89	S	
(2)	Be beryllium	Mg magnesium 12		calclum 20	87.6 Sr	걊	137.3	barium 56	[226]	* Lanthanide series * Actinide series	
(t)	Lithium 3	Na sodrum 11	39.1 X	potasslum 19	85.5 Rb	rubidium 37	132.9	caesium 55	[223] Fr francium 87	* Lanti * Actin	