Chemistry B (Salters)

Advanced GCE A2 H435
Advanced Subsidiary GCE AS H035

Mark Schemes for the Units

January 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Chemistry (H435)
 Advanced Subsidiary GCE Chemistry (H035)
 MARK SCHEME FOR THE UNITS

Unit/Content Page
F331 Chemistry for Life 1
F332 Chemistry of Natural Resources 8
F334 Chemistry of Materials 21
Grade Thresholds 34

F331 Chemistry for Life

Question			Expected Answers	Marks	Additional Guidance
1	(a)	(i)	skeletal \checkmark	1	ALLOW recognisable spellings
		(ii)	2,2,4-trimethylpentane $\checkmark \checkmark$	2	IGNORE gaps, dashes, hyphens, commas pentane \checkmark rest \checkmark
		(iii)	ring structure / arene / cyclic OR short(er) molecule \checkmark	1	ALLOW small
	(b)	(i)	burn measured mass / amount of fuel / octane measure temp rise of a fixed volume / mass / amount of water \downarrow use - energy transferred = mass of water x specific heat capacity (of water) x temp rise scale up to one mole of fuel / octane used / AW	5	ALLOW measure starting and finishing temperature / mass of octane / fuel DO NOT ALLOW just 'final' temp. recorded IGNORE reference to solution ALLOW q / energy $=m c \Delta T$ or mc θ allow ' m ' as mass of water unless conned eg ALLOW answer divided by moles burnt

Question		Expected Answers	Marks	Additional Guidance
	(ii)	any two from 4: heat loss to surroundings / air / effect of draughts; etc heat losses to calorimeter / apparatus; incomplete combustion of fuel / lack of (enough) oxygen; evaporation of fuel (from wick);	2	DO NOT ALLOW 'not standard conditions' / reference to data book values / AW DO NOT ALLOW 'enthalpy may escape’ IGNORE evaporation of water / measurement error / human error
(c)	(i)	$\Delta \mathrm{H}_{1}=$ enthalpy (change) of formation (of octane) $\Delta \mathrm{H}_{2}=$ enthalpy (change) of combustion of eight moles of carbon / (enthalpy (change) of formation of eight moles of carbon dioxide) $\Delta \mathrm{H}_{3}=$ enthalpy (change) of combustion of nine moles of hydrogen / (enthalpy (change) of formation of nine moles of water) $\Delta \mathrm{H}_{4}=$ enthalpy (change) of combustion of octane \checkmark	4	ALLOW omission of the words 'enthalpy change of...' IGNORE references to oxygen ALLOW appropriate symbols eg $\Delta \mathrm{H}_{\mathrm{f}}$ ALLOW ΔH_{2} and ΔH_{3} in either order. Score one out of two if numbers of moles not mentioned ALLOW $\Delta \mathrm{H}_{2} / \Delta \mathrm{H}_{3}$ in terms of enthalpy changed of formation of 8 moles CO_{2} and 9 moles of $\mathrm{H}_{2} \mathrm{O}$. DO NOT ALLOW any rearrangement of $\Delta \mathrm{H}_{1}$ etc
	(ii)	answer $=-248 \checkmark$	1	
		Total	16	

Question		Expected Answers	Marks	Additional Guidance		
	(c)	(i)	$\begin{array}{l}\text { difficult to detect very small amounts of Ar-40 formed K-40 } \\ \text { decayed / dating errors very large when so little decay has } \\ \text { taken place / AW } \checkmark\end{array}$	$\mathbf{1}$		
(ii)	$\begin{array}{l}\text { Ar }{ }^{+} \text {(allow Ar } r^{2+} \text {) } \checkmark \\ \text { 'not even fLLOW answers that talk only in terms of one half life' }\end{array}$					
	(iii)	$\begin{array}{l}\text { peak / bar / line at (mass numbers) 36, 38 and 40 } \checkmark \\ \text { size / height of peak related to abundance } \checkmark\end{array}$	$\mathbf{1}$	$\begin{array}{l}\text { ALLOW with correct mass / atomic numbers } \\ \text { (iv) }\end{array}$		
$\begin{array}{l}\text { (energy lost as) electrons go from higher to lower levels } \checkmark \\ \text { relationship of energy to frequency / wavelength } \checkmark \\ \text { gives a (specific) line(s) } \checkmark \\ \text { energy gaps / levels different for different elements } \checkmark \\ \text { QWC - wavelength / frequency / frequencies must be } \\ \text { spelled correctly }\end{array}$	$\mathbf{4}$	mass numbers needed to score			$]$	eg E = hf or in words
:---						
mention of lines scores a mark						

Question			Expected Answers	Marks	Additional Guidance
Q	(a)	(i)	(hydrocarbon) contains no benzene rings / not an arene \checkmark	1	DO NOT ALLOW contains no rings
		(ii)	fractional distillation \checkmark	1	
		(iii)	$\mathrm{C}_{25} \mathrm{H}_{52}+38 \mathrm{O}_{2} \rightarrow 25 \mathrm{CO}_{2}+26 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	
	(b)	(i)	unburnt hydrocarbon / $\mathrm{C}_{25} \mathrm{H}_{52} \checkmark$	1	ALLOW paraffin wax ALLOW CO ALLOW smaller hydrocarbon
		(ii)	carbon monoxide \checkmark carbon / soot	2	ALLOW water IGNORE oxides of nitrogen
	(c)	(i)	$\mathrm{C}_{3} \mathrm{H}_{6} \checkmark$	1	order of elements immaterial
		(ii)	$110-130^{\circ}$ 3 areas of electron density around central C areas of electron density / pairs repel as far apart as possible / minimize energy \downarrow	4	DO NOT ALLOW 3 'atoms' or 'electron pairs' ALLOW names or descriptions of electron groups eg double bond ALLOW clear diagram or description DO NOT ALLOW repel as much as possible TAKE CARE repel and 'as far apart' run together for only one mark ALLOW bonds (but not atoms) repel
		(iii)	catalysts and reactants in different (physical) states \checkmark	1	
		(iv)	contain hole(s) / channels / porous / gaps / rings \checkmark can trap branched / let through straight isomers \checkmark	2	
			Total	14	

Question		Expected Answers	Marks	Additional Guidance
4 (a)		$\begin{aligned} & \text { mass number }=1 \mathrm{v} \\ & \text { atomic number }=0 \end{aligned}$	2	
(b)	(i)	$\begin{aligned} & \text { moles of } \mathrm{Be}=1.75 / 9(0.19) \checkmark \\ & \text { moles of } \mathrm{Cu}=98.25 / 63.5(1.55) \end{aligned}$	2	all usual ecf's apply (allow working to more / less sig. figs.) Max 1 if unit other than moles put in
	(ii)	11 scores all three total no. of moles $=1.74$ $\% \mathrm{Be}=0.19 / 1.74 \times 100 \checkmark(=10.919)$ Sig. figs. separate mark based on a followable calculation	3	ALLOW ecf's from (b)(i) ALLOW sig. figs. mark for a (wrong) calculation based on some given figures
(c)		Delocalised electrons Regular array of cations / positive ions / residues \checkmark Labels but any used must be correct \checkmark	3	First two points can be on diagram or labels minimum of five cations shown (can touch) ALLOW positive atoms DO NOT ALLOW positive nucleus or positive metal
(d)		 'correct' pairs on Be \checkmark 3 pairs on $\mathrm{Cl} \checkmark$	2	DO NOT ALLOW ionic structure

Question		Expected Answers	Marks	Additional Guidance
(e)	melting point (is different) \checkmark (melting point) is higher in ionic compounds \checkmark	$\mathbf{3}$	ALLOW ORA throughout AND Any one of: ionic compounds conduct electricity when in solution / molten \checkmark OR ionic compounds (generally) water soluble / ora / AW \checkmark ALLOW bases liquids Must be a comparison for $2^{\text {nd }}$ mark	

F332 Chemistry of Natural Resources

Question			Expected Answers	Marks	Additional Guidance
1	(a)		Incomplete combustion \checkmark of hydrocarbons	2	ALLOW not enough oxygen or air linked to the idea of combustion / uncomplete combustion Second mark depends on the first. ALLOW fossil fuel or named fossil fuel / carbon in the fuel / organic fuel DO NOT ALLOW just 'fuel' or carbon as the fuel
	(b)		Toxic / poisonous / reduces the capacity of blood to carry oxygen around the body / AW AND Any one from: causes (photochemical) smog oxidised to CO_{2} which is a greenhouse gas / reacts with O_{2} to form CO_{2} which is a greenhouse gas	2	ALLOW respiratory problems, but not breathing problems. IGNORE harmful / dangerous Answer must have the CO_{2} AND the greenhouse gas for this alternative. ALLOW global warming instead of greenhouse gas.
	(c)	(i)	Homolytic (fission) / homolysis \checkmark	1	IGNORE 'photochemical dissociation'

Question		Expected Answers	Marks	Additional Guidance
	(ii)	464×1000 Energy value/6.02 $\times 10^{23}$ AND a correct evaluation (= $\left.7.71 \times 10^{-19} \mathrm{~J}\right) \checkmark$	2	One mark is for converting from kJ to J (ie: multiplying by 1000) The other is for dividing their energy value by 6.02×10^{23} (the Avogadro constant) ALLOW 2 or more sig. figs. but rounding must be correct. In order to score the second mark, there must be a correct evaluation of their expression. A completely correct answer on its own scores both marks.
	(iii)	Answer to (c)(ii)/6.63 $\times 10^{-34} \checkmark$ $=1.16 \times 10^{15}$ 3 sig. fig.	3	DO NOT ALLOW the second mark for evaluating any other expression (eg: answer to (c)(ii) $\times 6.63 \times 10^{-34}$) ALLOW sig. fig. mark for any 3 sig. fig. answer that follows from any calculation (even if their evaluation of their calculation is incorrect). A completely correct answer on its own scores all marks, including the sig. fig. mark.
(d)	(i)	(A particle) with one (or more) unpaired electron(s). \checkmark	1	Answer must be in the context of an electron as part of some sort of particle. IGNORE 'free' or 'lone' or single electron.
	(ii)	bond electrons \checkmark rest of structure	2	Any symbols can be used to represent the electrons (including the same symbol for all electrons). Candidate does not have to draw circles for electron shells. Non-bonding electrons do not have to be shown in pairs. It MUST be clear that a pair of electrons (with any symbols) is being shared between the H and the O for the first mark. IGNORE any inner electron shells.

Question		Expected Answers	Marks	Additional Guidance
	(iii)	propagation one radical is used and replaced by another / AW \checkmark	2	ALLOW there is a radical on both sides of the equation. Mark independently.
(e)		SiO_{2} : giant covalent / network solid / lattice / whole structure held together by covalent bonds / diagram CO_{2} : simple molecular / molecules / $\mathrm{O}=\mathrm{C}=\mathrm{O} / \mathrm{AW} \checkmark$ comparison of forces: weak intermolecular bonds (or forces) in CO_{2} / less energy needed to separate molecules / bonds in SiO_{2} are stronger than CO_{2} intermolecular bonds (or forces)	3	IGNORE 'intermolecular bonds' in SiO_{2} / giant molecule / giant structure Marks can be given for a labelled / annotated diagram IGNORE 'covalent'. Any type of intermolecular bonds can be named and can be abbreviated. It must be clear that the intermolecular bonds in CO_{2} are being discussed, not the covalent bonds.
(f)	(i)	$0.008 / 8 \times 10^{-3} \checkmark$	1	

Question		Expected Answers	Marks	Additional Guidance
	(ii)	Any four points from: 1 Sun emits UV 2 Earth absorbs some of the energy (from the Sun) / heats up \checkmark 3 Earth radiates emits / re-emits IR $4 \quad\left(\mathrm{CO}_{2}\right)$ absorbs IR radiation \checkmark 5 making bonds vibrate (more) 6 turned into kinetic energy that raises the temperature / transfers kinetic energy to thermal energy or heat or it warms the atmosphere or Earth. 7 some CO_{2} molecules radiate IR (which warms Earth) \checkmark AND more CO_{2} molecules means more radiation is absorbed / more CO_{2} means greater temperature increase / enhancing the greenhouse effect / causing global warming / warming the atmosphere / Earth / planet more \checkmark QWC - mark for connection of ideas: idea of linking IR absorbtion to vibrations of bonds / increase in temperature (marking point 4 linked to 5 or 6) \checkmark	6	IGNORE other types of radiation from the Sun. DO NOT ALLOW Earth reflects IR in point 3. Award marks for points 5 and 6 if the wrong frequency range of radiation is given as being absorbed in 4 . (eg candidate states CO_{2} absorbs UV).
(g)	(i)	aldehyde(s) \checkmark	1	ALLOW alkanal(s)
	(ii)	$\mathrm{CO}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \checkmark \checkmark$	2	ALLOW $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ or full structural formula for propanal. Completely correct scores both marks. Correct formula for ethane / correctly identifies H_{2} as the additional reagent scores one mark.

Question		Expected Answers	Marks	Additional Guidance
(f)		Any two from: 1. chloromethane is not broken down / unreactive in the troposphere / lower atmosphere 2. but is broken down / photodissociated (in the stratosphere) / AW by \checkmark 3. high energy UV / high frequency UV 4. (breakdown of chloromethane) producing chlorine atoms / chlorine radicals AND (products of chloromethane) catalyse ozone breakdown / AW \checkmark $\mathrm{C}-\mathrm{Br}$ bond is weaker (than $\mathrm{C}-\mathrm{C} /$) ORA so can be broken in the troposphere / molecule reacts in the troposphere / reacts before reaching the stratosphere \checkmark	5	ALLOW 'radiation' for 'UV' Points 2 and 4 can be scored from a reaction equation. QWC: To gain this mark, candidate must use the word catalyst or a derivative of it, spelled correctly and used in a grammatically correct way (eg: do not award for 'it catalyse the breakdown of ozone'). ALLOW 'catalyze’.
(g)	(i)	(concentration) values were low \checkmark	1	Answers need to show that values were less and not just different from the expected ones.
		Total	15	

Question			Expected Answers	Marks	Additional Guidance
3	(a)	(i)	addition \checkmark	1	DO NOT ALLOW additional.
		(ii)	propene \checkmark	2	ALLOW prop-1-ene DO NOT ALLOW prop-2-ene Mark independently. No ecf for the second mark.
	(b)	(i)	bromine (water) \checkmark	1	ALLOW Br 2
		(ii)	(from) brown / orange / yellow \checkmark (to) colourless	2	ALLOW any combination of these colours, but no others for the first mark (eg no mark for red / brown). DO NOT ALLOW clear for the second answer
	(c)		 (Z) (E)	2	Name and structure required for the mark in each case Correct structures with names swapped round scores 1 mark. Diagrams do not have to show correct bond angles. A correct representation of but-2-ene scores 1.
	(d)		instantaneous (dipole) - induced dipole \checkmark	1	ALLOW temporary dipole-induced temporary dipole / van der Waals forces
	(e)	(i)	Iow flexibility / resistant to chemical attack / does not react with water / unreactive / not prone to stress fractures / high tensile strength / abrasion resistant / impermeable / insoluble / rigid \checkmark	1	IGNORE strong, hard, durable, tough, malleable, dense, high melting point, can be moulded or remoulded. ALLOW waterproof or 'will not wear away'.
		(ii)	bags \checkmark	1	IGNORE food wrap / cling film / packaging.
			Total	11	

Question			Expected Answers	Marks	Additional Guidance
4	(a)	(i)	 hydrogen bond between correct atoms lone pair on relevant O in line with H bond partial charges shown, δ - on each O and $\delta+$ on each H $\mathrm{O}-\mathrm{H}-\mathrm{O}$ straight \checkmark	4	Hydrogen bond can be shown in other forms, but not as a solid line. Second mark, but NOT third mark, can be scored if the hydrogen bond is between incorrect atoms.
		(ii)	Any three from: 1. intermolecular bond in propene is instantaneous dipole-induced dipole 2. hydrogen bonds / intermolecular bonds (in propan-1ol) are stronger than those in propene (ORA) 3. intermolecular bonds must be broken for the liquid to boil 4. more energy is needed to break them (ORA) \checkmark AND QWC - mark for connection of ideas: idea of linking strength of intermolecular bonds to amount of energy needed to break them	4	ALLOW van der Waals' DO NOT ALLOW harder / easier DO NOT ALLOW 'higher temperature' for 'more energy'.

Question		Expected Answers		Marks	Additional Guidance
(b)		Elimination \checkmark		1	ALLOW any indication of chosen answer (eg: circling). DO NOT ALLOW the mark if more than one answer has been chosen.
(c)		reagent conditions sulfuric / phosphoric acid \checkmark heat / reflux \checkmark concentrated $\checkmark$$\|$OR heat \checkmark alumina / silica / pumice / porous pot \checkmark with (propan-1-ol) vapour \checkmark		3	ALLOW correct formula for reagent. ALLOW temperatures over $100^{\circ} \mathrm{C}$ for the heat mark Sulfuric acid AND alumina: CON reagent mark (but can still score condition marks). Clear alternatives (ie: sulfuric acid OR alumina) scores the mark. ALLOW c. for concentrated. Aqueous / water CONs the concentrated mark. The conditions marks may only be awarded if candidate has written an appropriate reagent, even if they have made a small mistake, eg: sulfuric without acid, or wrong formula (like AlO) (Concentrated) sulfuric acid with dichromate and heat scores zero. IGNORE references to pressure conditions.
(d)		rate of forward reaction = rat concentrations of reactants / closed system	of back reaction d products remain constant	2	IGNORE references to steady state.
(e)	(i)	amount of propene produced (increased pressure) pushes left/to the reactants / side with	decreases (position of) equilibrium to the fewest molecules	2	MUST mention equilibrium for the second mark. Mark independently.
	(ii)	amount of propene produced (increased temperature) push the endothermic direction / to	ncreases \checkmark (position of) equilibrium in he right / to the products \checkmark	2	MUST mention equilibrium for the second mark. Mark independently.

Question		Expected Answers	Marks	Additional Guidance
(f)		Any three from: 1. increased pressure increases number of particles per unit of volume 2. more collisions occur 3. (more collisions) per unit of time 4. rate increases/gets faster	3	ALLOW 'particles are closer together' for the first point DO NOT ALLOW 'reactants are closer together'. More frequent collisions / collisions occur more often covers two points IGNORE more likely to collide / greater chance of collisions in point 2.
(g)	(i)		1	ALLOW any clear representations of a structural formula, eg: $\mathrm{CH}_{3} \mathrm{CHBrCH}_{3}$
	(ii)		1	ALLOW CH3 $\mathrm{CH}_{2} \mathrm{CH}_{3}$
(h)		platinum \checkmark	1	ALLOW Pt.
		Total	10	

Question		Expected Answers	Marks	Additional Guidance
5	(a)	Chemical that: causes another chemical to be oxidised / is itself reduced / decreases in oxidation state / is an electron acceptor / removes electrons from another chemical $\mathrm{O}_{2} /$ (potassium) manganate(VII) AND either (Oxidises) iron from oxidation state $+2 / \mathrm{Fe}(\mathrm{II})$ to $+3 / \mathrm{Fe}(\mathrm{III})$ OR (Manganese reduced) from $\mathrm{Mn}(\mathrm{VII}) /+7 /$ manganate(VII) \downarrow to $\mathrm{Mn}(\mathrm{IV}) /+4 /$ manganese(IV) oxide \checkmark	4	ALLOW 'chemical that oxidises another chemical' / oxidising agent. IGNORE references to change in pH . ALLOW permanganate / $\mathrm{MnO}_{4}{ }^{-} / \mathrm{KMnO}_{4}$ Fe^{2+} to Fe^{3+} scores 1.
	(b)	$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g} / \mathrm{aq})$ Correct species Balanced State symbols	3	Second and third marks depend on the first. ALLOW Al ${ }^{3+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})$ for one mark, if no other mark is scored (IGNORE any other chemicals)
	(c)	Calcium hydroxide / calcium oxide \checkmark Sodium carbonate Hydrogencarbonate	3	IGNORE a correct oxidation state for Ca and Na ALLOW 'hydrogen carbonate' but NOT 'bicarbonate'
	(d)	Calcium ions more highly charged or more positive (than sodium ions) / mention of Ca^{2+} and Na^{+} so are more strongly attracted to the negative charge on the resin / (R)COO ${ }^{-} /$anion groups \checkmark	2	IGNORE references to reactivity. DO NOT ALLOW just 'attracted to the resin'.

Questi	Expected Answers	Marks	Additional Guidance
(e)	$\begin{aligned} & \text { moles } \mathrm{Ca}^{2+}=(800 / 1000) \times 0.002(=0.0016) \checkmark \\ & \text { moles } \mathrm{Na}^{+}=2 \times \text { moles } \mathrm{Ca}^{2+}(=0.0032) \checkmark \\ & \text { mass } \mathrm{Na}^{+}=\text {moles } \mathrm{Na}^{+} \times 23=(0.0032 \times 23=0.0736 / 0.074) \end{aligned}$ $(\mathrm{g})^{\checkmark}$	3	Mass $\mathrm{Na}^{+}=0.0368 / 0.037$ scores 2.
(f)	Any five points from: 1. kills bacteria / kills pathogens / disinfectant 2. cheap compared to other water treatment chemicals. 3. Cl_{2} or chlorine is a gas, making it difficult to contain / it spreads easily. 4. toxic / poisonous 5. causes respiratory problems / breathing problems 6. forms by-products / THMs that are suspected carcinogens 7. dissolves in rivers / local water supplies 8. forming bleach and acid 9. (bleach and acid) kill life forms in the water	5	DO NOT ALLOW just 'cheap'. Answer must have 'gas' and either 'difficult to contain' or 'spreads easily' to gain the mark. ALLOW Cl_{2} / chlorine is a gas so needs a strong container. IGNORE 'difficult to store / difficult to transport' DO NOT ALLOW harmful / irritant / dangerous instead of toxic. Answer must have 'by-products / THMs' and 'suspected carcinogens' to gain the mark.
	Total	20	

F334 Chemistry of Materials

Question	Expected Answers	Marks	Additional Guidance
1 (a)	2-hydroxypropanoic acid $\checkmark \checkmark$	2	mark independently 2-hydroxy DO NOT ALLOW hydroxyl propanoic acid ALLOW if propan- and -oic are separated.
(b) (i)	(enantiomers are) isomers whose structures are mirror images of one another \checkmark and are non-superimposable	2	mark independently mirror images non-superimposable IGNORE references to 4 different groups around a C atom, optical isomerism, various chiral words \& rotation of plane polarised light
(ii)		2	3D structure correct for one isomer \checkmark DO NOT ALLOW 90 or 180 degree angles between the two bonds in the plane of the paper mirror-image correct (must have 4 bonds around the C) \checkmark ALLOW ecf for non 3D structure with four different groups only IGNORE the way the groups are bonded to carbon eg -OH or - HO , same for $\mathrm{COOH} \& \mathrm{CH}_{3}$
(c) (i)	$\begin{aligned} & P=C \\ & Q=A \\ & R=B \end{aligned}$	1	

Question	Expected Answers	Marks	Additional Guidance
(ii)	$\mathrm{P}=(\mathbf{C})$ does not fizz / does not react / with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ AND so no - COOH group present / AW \checkmark Q = no phenol group (in A), so FeCl_{3} remains yellow / AW \checkmark $R=(B$ has) both phenol \& carboxylic acid (COOH) (so will turn FeCl_{3} purple and will fizz with $\mathrm{Na}_{2} \mathrm{CO}_{3}$) / AW \checkmark The words in brackets are only needed if tests not discussed for P \& Q.	3	if answers to (i) are incorrect/no response award 1 mark for correct answers for having both tests for phenol and carboxylic acid: ie: purple solution $=$ phenol AND acids fizz with carbonate \checkmark IGNORE P is \mathbf{C} as it turns FeCl_{3} purple IGNORE Q is \mathbf{A} as it fizzes \& is therefore a carboxylic acid
(d)	C because: (broad) peak at around $3250\left(\mathrm{~cm}^{-1}\right)$ indicates alcohol or phenol / OH / hydroxyl group no peak at 1700-1725 (cm^{-1}) so no $\underline{\mathrm{C}=\mathrm{O}}$ (in -COOH) present	3	IGNORE any reference to carboxylic acid for the 3250 peak ALLOW a range around 3250 Peaks may be identified on the diagram IGNORE all other peaks
(e) (i)	nucleophilic addition $\checkmark \checkmark$	2	nucleophilic addition mark independently

Question	Expected Answers	Marks	Additional Guidance
(ii)		4	'curly' arrow showing attack by ${ }^{-} \mathrm{CN}$ at $\mathrm{C}=\mathrm{O}$ carbon DO NOT ALLOW arrow starting from N of ${ }^{-} \mathrm{CN} /$ singleheaded arrows but give 1 mark if both are single headed but otherwise correct $\mathrm{C}=\mathrm{O}$ bond polarised correctly \checkmark curly arrow showing movement of double bond final structure correct ALLOW any correct structural formula not just skeletal O MUST be -ve IGNORE any further reaction showing O^{-}gaining H^{+}
(iii)	the rate determining step (slow step) does not involve water \checkmark (since) water does not appear in the rate equation / water is zero order \checkmark Since water / H+ required to form product it must react in a subsequent (fast) step/there must be at least 2 steps in the reaction / AW \checkmark OR the rate determining step (slow step) only involves ethanal \& cyanide (because only) ethanal \& cyanide appear in the rate equation and so water must react in a subsequent step \checkmark	3	

Question	Expected Answers	Marks	Additional Guidance
(f) (i)	reaction 1.1 has a higher atom economy than reaction $1.2 \checkmark$	$\mathbf{2}$	ALLOW comparison of percentage atom economy eg reaction 1.1 has 100\% economy, reaction 1.2 does not. because it is an addition reaction / only one product is formed whereas in reaction 1.2 hydrolysis / condensation occurs / atoms are wasted / lost / two 'products' are formed / co-products are also formed / AW \checkmark

Question	Expected Answers	Marks	Additional Guidance
2 (a)	Fe^{3+} will oxidise Cu / ORA OR Cu loses electrons to form $\mathrm{Cu}^{2+} /$ ORA \checkmark because electrode potential of $\mathrm{Fe}^{3+} I\left(\mathrm{Fe}^{2+}\right)$ is more positive / ORA (involves the Copper half-cell) OR Uses $\mathrm{E}_{\text {cell }}$ calculation to show reaction is feasible \checkmark $\mathrm{Cu}+2 \mathrm{Fe}^{3+} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{Fe}^{2+} \checkmark$	3	ALLOW Fe(III) and $\mathrm{Cu}(\mathrm{II})$ DO NOT ALLOW electronegativity or higher / lower or larger / smaller IGNORE state symbols
(b) (i)	Pt electrode for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ half cell in $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ Cu electrode in Cu^{2+} salt bridge labelled and in solutions conditions: $1 \mathrm{~mol} \mathrm{dm}^{-3}$ and $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$	5	ALLOW CuSO 4 etc. instead of Cu^{2+} ALLOW 1 molar / 1M
(ii)	$0.43 \mathrm{~V} \checkmark$	1	IGNORE any sign
(c) (i)	Copper(I) iodide \checkmark	1	DO NOT ALLOW copper iodide ALLOW Copper I iodide

Question	Expected Answers	Marks	Additional Guidance
(ii)	1. moles of thiosulfate $=0.200 \times(20.5 / 1000)=\mathbf{0 . 0 0 4 1}$ 2. (moles of iodine $\left(\mathrm{I}_{2}\right)=0.5 \times$ answer from 1 (0.0041) and moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $25.0 \mathrm{~cm}^{3}=2 \times 0.5 \mathrm{x}$ answer from $1(0.0041)$) $=0.0041$ 3. moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $250 \mathrm{~cm}^{-3}=10 \mathrm{x}$ answer from $1(0.0041)=0.0410 \checkmark$ 4. mass of Cu in coin = answer from 3 (0.0410) $x 63.5=2.6035 \mathrm{~g} \checkmark$ 5. \% of Cu in coin $=($ answer from $4(2.6035) / 3.47)$ $\times 100=75.0$ 6. (3 sig. figs.)	6	75.0 with no / incomplete working scores 6 marks. The marks are awarded for the working out given in bold: If final answer is incorrect please annotate marks given with ticks AND crosses where errors have occurred eg missing out step 3. 1. moles of thiosulfate $=0.0041$ moles 2. correct moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $25.0 \mathrm{~cm}^{3}$ ecf from 1 3. moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $250 \mathrm{~cm}^{-3}=10 \times$ moles of thiosulfate 4. mass of Cu in coin $=$ moles of $\mathrm{Cu}^{2+}(\mathrm{aq})$ in $250 \mathrm{~cm}^{-3}$ x 63.5 5. \% of Cu in coin $=$ mass of Cu in coin $\times 100 \checkmark$ 6. correct/incorrect answer MUST be given to 3 sig figs. Steps 3 \& 4 may be in a different order
(d) (i)	(transmits) Blue $\mathrm{Cu}^{2+}(\mathrm{aq})$ absorb red / orange light QWC - absorb(s) / absorbing / absorption / absorbance / absorbed One of these words has to be used to gain the second mark and spelling must be correct	2	IGNORE pale, deep or light etc. referring to blue, reflects DO NOT ALLOW green ALLOW complementary colour / specific frequencies / wavelengths of light are absorbed DO NOT ALLOW all other frequencies / colour / AW Use of 'emit' is a CON for the $2^{\text {nd }}$ mark

Question	Expected Answers	Marks	Additional Guidance
(i)	Ligand substitution $\left[\mathrm{CuCl}_{4}\right]^{2-} \checkmark$	2	ALLOW ligand replacement / displacement / exchange or complex formation The charge is required ALLOW $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}\right]^{2-}$
(iii)	Any five from a-f: a. make up standard solutions / of known concentrations (of $\mathrm{Cu}^{2+}(\mathrm{aq})$) b. choose a suitable filter / set the colorimeter to a suitable wavelength c. zero colorimeter with water / solvent / AW d. measure absorbance / absorption of standard solutions / AW e. plot calibration curve f. measure unknown AND g. QWC read off concentration from calibration curve / AW \checkmark	6	IGNORE transmittance
	Total	26	

Question	Expected Answers	Marks	Additional Guidance
$3 \text { (a) (i) }$		2	the link between phosphate group and any -OH group on the sugar ie $\mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}$ (in ring next to -O-) or P-O-C (in ring) depending which -OH group is used \checkmark correct linkage ($\mathrm{P}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{C}$) and rest of structure correct \checkmark
(ii)	Water / $\mathrm{H}_{2} \mathrm{O}$ and condensation (reaction) \checkmark	1	
(iii)		1	ALLOW ALLOW if the $\mathbf{N}-\mathbf{H}$ group is circled
(iv)	lone pair (of electrons) on $\mathrm{N} /$ amine (group) \checkmark accepts a proton / H^{+}	2	

Question	Expected Answers	Marks	Additional Guidance
(b)		3	2 hydrogen bonds correct \checkmark DO NOT ALLOW more than 2 bonds correct polarities (all 3) on one group of atoms \checkmark lone pair on the NORO \checkmark
(c)	two strands (not three) phosphate groups on the outside (not on the inside) bases face into the centre (not the outside)	3	ALLOW double helix IGNORE phosphate backbone
(d)	for removal: infringement of personal liberty / AW / 'fingerprint' not unique only probability / techniques used not foolproof / law / type of government might change changing accessibility / AW against removal: helps to solve many crimes, particularly 'cold' crimes / 'innocent until proved guilty' / AW future research into disease	2	IGNORE hacking into database / leakage of data (NOTE: probability may only be 1 in 20 for some population groups)
	Total	14	

Question	Expected Answers	Marks	Additional Guidance
4 (a)		2	1 mark for each structure correct DO NOT ALLOW missing H atoms if structural formulae are drawn
(b) (i)	there are (two) different groups on each carbon of a $\mathrm{C}=\mathrm{C}$ in neoprene these groups can not rotate about the double bond	2	May be shown in a diagram ALLOW restricted / limited rotation about the double bond
(ii)	(less trans linkages) will make the chains less linear / less regular / less ordered / ORA \checkmark so they can not line up / be arranged so regularly / closely and the crystallinity will be reduced	2	ALLOW chains have a kink / are more randomly arranged Note: $1^{\text {st }}$ mark is for shape of chain, $2^{\text {nd }}$ mark is for relative arrangement of chains.
(c)	-CONH group / NH group / amide group allows nylon to form hydrogen bonds with water molecules no hydrogen bonding in neoprene water molecules will force chains further apart / chains will not fit as closely together / AW \checkmark chains less crystalline / weaker intermolecular forces so T_{g} will be lowered \checkmark	4	IGNORE chains sliding over each other

\(\left.\begin{array}{|c|c|c|l|}\hline Question \& Expected Answers \& Marks \& Additional Guidance

\hline (d) \& \& \mathbf{2} \& 6 carbon atoms and - \mathrm{NH}_{2} group \checkmark

-\mathrm{COO}^{-} \checkmark\end{array}\right]\)| ALLOW skeletal or any equivalent/alternative structural |
| :--- |
| formula |
| DO NOT ALLOW structures with missing H atoms |

Question	Expected Answers	Marks	Additional Guidance
5 (a) (i)	$3 \mathrm{H}_{2} \mathrm{~S}+\underset{\checkmark}{2 \mathrm{MnO}_{4}^{-}}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}$	1	all 4 numbers MUST be correct
(ii)	oxidation state $=+4 \checkmark$	1	DO NOT ALLOW 4+ OR 4
(b) (i)	iron(III) hydroxide \checkmark	1	DO NOT ALLOW iron hydroxide / Fe(OH) ${ }_{3}$
(ii)	$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$	2	equation correct state symbols correct ALLOW ecf for iron(II) hydroxide in (i)
(c) (i)	The large excess of ethanedioate and acid means that their concentrations were virtually constant during the reaction / concentrations hardly changed / concentrations were high so little effect on rate / AW \checkmark	1	'A large excess of ethanedioate and acid' by itself does not get the mark IGNORE 'excess ethanedioate and acid not limit the rate of reaction' / AW Look for concentration in answer
(ii)	One of the following: Method 1 half-lives determination of at least two half-lives, 13-15 s half-life constant \checkmark first order \checkmark OR Method 2 finding rate at different concentrations calculation of at least two rates rate is proportional to concentration \checkmark first order \checkmark	3	Two values for half-life MUST be given Working must be shown as either a calculation or by lines on graph.

Question	Expected Answers	Marks	Additional Guidance
(iii)	3d 4s A \uparrow \uparrow \uparrow \perp	1	
(d)	One from the following: loss of $\mathrm{CO}_{2} / \mathrm{CO}_{2}$ produced \checkmark by weighing / gas collection / measuring milkiness of lime-water \checkmark OR titration of $\mathrm{MnO}_{4}^{-} \checkmark$ with (standard) $\mathrm{Fe}^{2+}(\mathrm{aq}) \checkmark$ OR titration of $\mathrm{H}^{+}(\mathrm{aq})$ decrease \checkmark with $\mathrm{OH}^{-} / \mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \checkmark$ OR measure pH change $\checkmark \mathrm{H}^{+}$ions used in the reaction	2	The two parts are marked independently ALLOW gas for CO_{2} and measuring volume for gas collection
	Total	12	

Grade Thresholds

Advanced GCE Chemistry B (Salters) (H035 H435) January 2010 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	A	B	C	D	E	U
F331	Raw	60	41	36	31	26	21	0
	UMS	90	72	63	54	45	36	0
F332	Raw	100	74	67	60	54	48	0
	UMS	150	120	105	90	75	60	0
F334	Raw	90	65	58	51	44	37	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
H035	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
$\mathbf{H 0 3 5}$	12.9	37.1	61.7	83.6	97.4	100.0	823

823 candidates aggregated this series

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums/index.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

