OCR A Formulae

Module 2: Foundations in Chemistry

Atomic Structure and isotopes

number of neutrons = mass number - atomic number

Relative atomic mass = (mass of isotope 1 x abundance of isotope 1) + (mass of isotope 2 x abundance of isotope 2)/100

Amount of Substance

% atom economy = M_r of desired product/sum of M_r of all products x 100

% yield = actual mass/theoretical mass x 100

moles = mass/M_r

moles = concentration x volume/1000 (dm³)

moles = volume/24 (dm³) (gases) (vale in data sheet)

moles = number of particles/6.02 x 10²³ (value in data sheet)

mol dm⁻³ x M_r \rightarrow g dm⁻³

PV = nRT (gases) where v is in m³, T is in K and P is in Pa, R (in data sheet)

percentage error = uncertainty in instrument/value x 100

Physical Chemistry

Enthalpy Changes

 ΔH = sum of bonds broken – sum of bonds made (mean bond enthalpies) Q = mc ΔT where m = mass of water, c = 4.18 (in data sheet) and T is in K

Reaction Rates

Rate = 1/time

Rate = gradient of concentration-time curve

Equilibrium

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Module 5: Physical Chemistry & Transition Elements

Rates

For A + B \rightarrow C + Drate = k[A][B]k = ln2/t_{1/2}where t_{1/2} = a half-life for a 1st order reactionArrhenius:k = Ae^{-Ea/RT}lnk = lnA -Ea/RT(both given in data sheet)

Equilibrium

Example: $CH_4(g) + H_2O(g) - CO(g) + 3H_2(g)$ $K = \frac{p(CO) \times p(H_2)^3}{2}$

$$K_p = \frac{p(OO) \times p(H_2)}{p(CH_4) \times p(H_2O)}$$

Mole fraction = moles of one gas/moles of all the gases

Partial Pressure = mole fraction x total pressure

Total Pressure = sum of the partial pressures

Acids and Bases

pH = -log₁₀ [H⁺]

[H⁺] = 10^{-pH}

 $K_w = [H^+][OH^-] = 1x10^{-14} mol^2 dm^{-6}$ (at room temp) (value in data sheet)

 $K_w = [H^+]^2$ (pure water)

% dissociation: H⁺ concentration at equilibrium/the original acid concentration x 100

Expression and use in buffer $K_a = \frac{[H^+][A^-]}{[HA]}$

Weak acid calculations:
$$K_{a} = \frac{[H^{+}]^{2}}{[HA]}$$
$$pK_{a} = -log_{10}K_{a}$$

Enthalpy, Entropy & Free Energy

 $\Delta S = (sum of entropy of products) - (sum of entropy of reactants)$

K_a = 10^{-рКа}

ΔH = (sum of enthalpy of products) – (sum of enthalpy of reactants)

 $\Delta G = \Delta H - T \Delta S_{system}$

min. temp. = $\Delta H / \Delta S_{system}$

Electrode Potentials

 $E_{cell} = E^{\circ}$ of the more positive value $-E^{\circ}$ of the more negative value

or

 $E_{cell} = E^{\bullet}$ of the species being reduced – E^{\bullet} of the species being oxidised