OCR A Chemical Tests

AS Inorganic Tests

Tests for halide ions

Add HNO₃ then AgNO₃ \rightarrow precipitate. Then add NH₃ if necessary.

Chloride: white precipitate that dissolves in dilute NH₃

Bromide: cream precipitate that dissolves in concentrated NH₃

lodide: yellow precipitate that **does not dissolve** in any NH₃ solution

Ammonium NH₄+

Add NaOH → NH₃. Test for NH₃....it turns red litmus paper blue

Carbonate CO₃²-

Add HCl to the carbonate solution \rightarrow CO₂. Turns limewater cloudy. Or vice-versa. Add the carbonate to an acid

Sulphate SO₄²-

Add BaCl₂ \rightarrow a white precipitate, barium sulphate (BaSO₄).

AS Organic Tests

Alcohols: add $K_2Cr_2O_7/H^+$ orange \rightarrow green colour change for primary and secondary alcohols

Alkenes: Add bromine water. Orange → colourless

Haloalkanes: Dissolve in ethanol, add water and then do the halide ion test (as above)

A-level Inorganic Tests

The transition metal complexes are often included in chemical test questions. It's a huge part of that topic and there are a lot of reactions. I have included all of them in the table below. It's debatable if these are chemical tests.

Complex	Few drops NaOH or NH₃	excess NaOH	excess NH₃
pale green [Fe(H ₂ O) ₆] ²⁺	Dirty green ppt Fe(OH) ₂	No reaction	No reaction
Green/violet [Cr(H ₂ O) ₆] ³⁺	Pale green ppt Cr(OH)₃	Deep green soln [Cr(OH) ₆] ³⁻	Violet soln [Cr(NH₃) ₆]³+
yellow [Fe(H ₂ O) ₆] ³⁺	brown ppt Fe(OH)₃	No reaction	No reaction
blue [Cu(H ₂ O) ₆] ²⁺	pale blue ppt Cu(OH) ₂	No reaction	Deep blue soln [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺
pale pink [Mn(H ₂ O) ₆] ²⁺	Light brown ppt Mn(OH) ₂	No reaction	No reaction

A-level Organic Tests

Aldehyde or ketone: add 2,4-DNPH (Brady's reagent) → orange precipitate

Aldehyde: add Tollen's → silver mirror or Fehling's → red precipitate

Carboxylic Acid: add carbonate as for AS inorganic \rightarrow CO₂ or add PCI₅ \rightarrow steamy white fumes

Benzene: add bromine water at room temp \rightarrow no reaction. Not a good test! Or combustion \rightarrow burns with a sooty flame.

Esters and Amides: no easy test

© The Exam Formula 2019