Edexcel Formulae

Topic 1

number of neutrons = mass number - atomic number

Relative atomic mass = (mass of isotope 1 x abundance of isotope 1) + (mass of isotope 2 x abundance of isotope 2)/100

Topic 5

% atom economy = M_r of desired product/sum of M_r of all products x 100

% yield = actual mass/theoretical mass x 100

 $moles = mass/M_r$

moles = concentration x volume/1000 (dm^3)

moles = volume/24 (dm³) (gases)

moles = number of particles/6.02 x 10^{23} (value in data sheet)

mol dm⁻³ x M_r \rightarrow g dm⁻³

PV = nRT (gases) where v is in m³, T is in K and P is in Pa, R (in data sheet)

percentage error = uncertainty in instrument/value x 100

Topic 8

 $\Delta H = sum of bonds broken - sum of bonds made (mean bond enthalpies)$

Q = $mc \Delta T$ where m = mass of water, c = 4.18 (in data sheet) and T is in K

Topic 9

Rate = 1/time

Rate = gradient of concentration-time curve

$$aA + bB \longrightarrow cC + dD$$

$$K_c = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Topic 11

Example:

$$CH_4(g) + H_2O(g) \longrightarrow CO(g) + 3H_2(g)$$

$$K_p = \frac{p(CO) \times p(H_2)^3}{p(CH_4) \times p(H_2O)}$$

Mole fraction = moles of one gas/moles of all the gases

Partial Pressure = mole fraction x total pressure

Total Pressure = sum of the partial pressures

Topic 12

$$pH = -log_{10} [H^{+}]$$

$$[H^+] = 10^{-pH}$$

 $K_w = [H^+][OH^-] = 1x10^{-14} \text{ mol}^2\text{dm}^{-6}$ (at room temp) (value in data sheet)

$$K_w = [H^+]^2$$
 (pure water)

Expression and use in buffer calculations:

$$K_a = \frac{[H^+][A]}{[HA]}$$

Weak acid calculations:

$$K_a = \frac{[H^+]^2}{[HA]}$$

$$pK_a = -log_{10}K_a$$

$$K_a = 10^{-pKa}$$

Half-equivalence point:

$$K_a = [H^+]$$
 or $pK_a = pH$

Topic 13

 ΔS_{system} = (sum of the entropy of the products) – (sum of the entropy of the reactants)

$$\Delta S_{surroundings} = - \Delta H/T$$

$$\Delta S_{total} = \Delta S_{system} + \Delta S_{surroundings}$$

$$\Delta G = \Delta H - T\Delta S_{system}$$

$$\Delta G = -RTInK$$

min. temp. =
$$\Delta H/\Delta S_{system}$$

Topic 14

 $E_{cell} = E^{\bullet}$ of the more positive value $-E^{\bullet}$ of the more negative value

or

 E_{cell} = E^{\bullet} of the species being reduced – E^{\bullet} of the species being oxidised

Topic 16

For
$$A + B \rightarrow C + D$$
 rate = k[A][B]

Arrhenius: $k = Ae^{-Ea/RT}$

 $lnk = lnA - E_a/RT$

© The Exam Formula 2019