AQA Formulae

Atomic Structure

Fundamental Particles

$$
\text { number of neutrons = mass number }- \text { atomic number }
$$

Time of Flight Mass Spectroscopy

Relative atomic mass = (mass of isotope $1 \mathbf{x}$ abundance of isotope $\mathbf{1}$) + (mass of isotope $\mathbf{2 x}$ abundance of isotope 2)/100

$$
E_{k}=1 / 2 m v^{2} \quad \text { where } m=\text { mass of one ion in } k g, v=\text { speed of ion in } \mathrm{ms}^{-1}
$$

$v=d / t \quad$ where $d=$ distance of tube in $m, t=$ time taken for ion to reach detector in secs

Amount of Substance

\% atom economy $=M_{r}$ of desired product/sum of M_{r} of all products $\times 100$
$\%$ yield = actual mass/theoretical mass $\times 100$
moles $=$ mass $/ M_{r}$
moles $=$ concentration \times volume $/ 1000\left(\mathrm{dm}^{3}\right)$
moles $=$ number of particles/ 6.02×10^{23} (value in data sheet)
$\mathrm{PV}=\mathrm{nRT}$ (gases) where v is in $\mathrm{m}^{3}, \mathrm{~T}$ is in K and P is in Pa, R (in data sheet)
density $=$ mass/volume
percentage error $=$ uncertainty in instrument/value $\mathbf{x} 100$

Energetics

$\Delta \mathrm{H}=$ sum of bonds broken - sum of bonds made (mean bond enthalpies)
$Q=m c \Delta T$ where $m=$ mass of water, $c=4.18$ (in data sheet) and T is in K

Equilibrium

$$
\begin{gathered}
a A+b B \rightleftharpoons c C+d D \\
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}
\end{gathered}
$$

$$
\begin{gathered}
\text { Rate }=1 / \text { time } \\
\text { Rate }=\text { gradient of concentration-time curve }
\end{gathered}
$$

Thermodynamics

$$
\begin{gathered}
\Delta S=\text { (sum of entropy of products) - (sum of entropy of reactants) } \\
\Delta H=\text { (sum of enthalpy of products) - (sum of enthalpy of reactants) }
\end{gathered}
$$

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}_{\text {system }}
$$

min. temp. $=\Delta \mathrm{H} / \Delta \mathrm{S}_{\text {system }}$

Equilibrium

Example:

$$
\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{p}(\mathrm{CO}) \times \mathrm{p}\left(\mathrm{H}_{2}\right)^{3}}{\mathrm{p}\left(\mathrm{CH}_{4}\right) \times \mathrm{p}\left(\mathrm{H}_{2} \mathrm{O}\right)}
$$

Mole fraction = moles of one gas/moles of all the gases

Partial Pressure $=$ mole fraction \mathbf{x} total pressure

Total Pressure $=$ sum of the partial pressures

Electrode Potentials

$E_{\text {cell }}=E^{\ominus}$ of the more positive value $-E^{\ominus}$ of the more negative value

$$
\text { or }
$$

$E_{\text {cell }}=E^{9}$ of the species being reduced $-E^{\bullet}$ of the species being oxidised

Acids and Bases

$$
\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]
$$

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}
$$

$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ (at room temp) (value in data sheet)

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]^{2} \text { (pure water) }
$$

Half-equivalence point:

$$
\mathrm{K}_{\mathrm{a}}=\left[\mathrm{H}^{+}\right] \text {or } \mathrm{pK} \mathrm{~K}_{\mathrm{a}}=\mathrm{pH}
$$

Expression and use in buffer calculations:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Weak acid calculations:

$$
\begin{gathered}
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]} \\
\mathrm{pK}_{\mathrm{a}}=-\log _{10} \mathrm{~K}_{\mathrm{a}} \\
\mathrm{~K}_{\mathrm{a}}=10^{-\mathrm{pKa}}
\end{gathered}
$$

Transition Metals

$\Delta E=h v$ where $h=6.63 \times 10^{-34}, v=$ frequency in Hz
$c=v \times \lambda$ where $c=$ speed of light $3 \times 10^{8} \mathrm{~ms}^{-1}, \lambda=$ wavelength in m

Rates

$$
\begin{array}{ll}
\text { For } A+B \rightarrow C+D & \text { rate }=k[A][B] \\
\text { Arrhenius: } & k=A e^{-E a / R T} \\
& \ln k=\ln A-E_{a} / R T \quad \text { (both given in data sheet) }
\end{array}
$$

Rearranged:

$$
E_{a}=(\ln A-\ln k) \times R T \text { and } T=E_{a} /(\ln A-\ln k) \times R
$$

© The Exam Formula 2019

